Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Review Article

Armed therapeutic viruses: Strategies and challenges to arming oncolytic viruses with therapeutic genes

Abstract

Oncolytic viruses are attractive therapeutics for cancer because they selectively amplify, through replication and spread, the input dose of virus in the target tumor. To date, clinical trials have demonstrated marked safety but have not realized their theoretical efficacy potential. In this review, we consider the potential of armed therapeutic viruses, whose lytic potential is enhanced by genetically engineered therapeutic transgene expression from the virus, as potential vehicles to increase the potency of these agents. Several classes of therapeutic genes are outlined, and potential synergies and hurdles to their delivery from replicating viruses are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wildner O . Oncolytic viruses as therapeutic agents Ann Med 2001 33: 291–304

    Article  CAS  PubMed  Google Scholar 

  2. Ring CJ . Cytolytic viruses as potential anti-cancer agents J Gen Virol 2002 83: Pt 3 491–502

    Article  PubMed  Google Scholar 

  3. Kirn D . Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer Oncogene 2000 19: 6660–6669

    Article  CAS  PubMed  Google Scholar 

  4. Hermiston T . Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer J Clin Invest 2000 105: 1169–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khuri FR, Nemunaitis J, Ganly I et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer Nat Med 2000 6: 879–885

    Article  CAS  PubMed  Google Scholar 

  6. Smith RR, Huebner RJ, Rowe WP, Schatten WE, Thomas LB . Studies on the use of viruses in the treatment of carcinoma of the cervix Cancer 1956 9: 1211–1218

    Article  PubMed  Google Scholar 

  7. Kirn D . Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer Oncogene 2000 19: 6660–6669

    Article  CAS  PubMed  Google Scholar 

  8. Reid T, Galanis E, Abbruzzese J et al. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial Gene Ther 2001 8: 1618–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nemunaitis J, Khuri F, Ganly I et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer J Clin Oncol 2001 19: 289–298

    Article  CAS  PubMed  Google Scholar 

  10. Markert JM, Medlock MD, Rabkin SD et al. Conditionally replicating herpes simplex virus mutant, G207, for the treatment of malignant glioma: results of a phase I trial Gene Ther 2000 7: 867–874

    Article  CAS  PubMed  Google Scholar 

  11. Rampling R, Cruickshank G, Papanastassiou V et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma Gene Ther 2000 7: 859–866

    Article  CAS  PubMed  Google Scholar 

  12. Pecora AL, Rizvi N, Cohen GI et al. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers J Clin Oncol 2002 20: 2251–2266

    Article  CAS  PubMed  Google Scholar 

  13. Csatary LK, Moss RW, Beuth J et al. Beneficial treatment of patients with advanced cancer using a Newcastle disease virus vaccine (MTH-68/H) Anticancer Res 1999 19: 635–638

    CAS  PubMed  Google Scholar 

  14. Csatary LK, Bakacs T . Use of Newcastle disease virus vaccine (MTH-68/H) in a patient with high-grade glioblastoma JAMA 1999 281: 1588–1589

    Article  CAS  PubMed  Google Scholar 

  15. Kirn D, Niculesco-Duvaz I, Halden G, Springer CJ . The emerging fields of suicide gene therapy and virotherapy Trends Mol Med 2002 8: S68–S73

    Article  CAS  PubMed  Google Scholar 

  16. Hermiston T . Fighting fire with fire: attacking the complexity of human tumors with armed therapeutic viruses Curr Opin Mol Ther 2002 4: 334–342

    CAS  PubMed  Google Scholar 

  17. McCormick F . Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer 2001 1: 130–141

    Article  CAS  PubMed  Google Scholar 

  18. Wilson DR . Viral-mediated gene transfer for cancer treatment Curr Pharmacol Biotechnol 2002 3: 151–164

    Article  CAS  Google Scholar 

  19. Willis AC, Chen X . The promise and obstacle of p53 as a cancer therapeutic agent Curr Mol Med 2002 2: 329–345

    Article  CAS  PubMed  Google Scholar 

  20. Levine A, DiMiao D, Coen DM . Fields Virology (Fourth Edition) 2001 1: 3–18 119–132

  21. Nishizaki M, Fujiwara T, Tanida T et al. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect Clin Cancer Res 1999 5: 1015–1023

    CAS  PubMed  Google Scholar 

  22. Buckbinder L, Talbott R, Velasco-Miguel S et al. Induction of the growth inhibitor IGF-binding protein 3 by p53 Nature 1995 377: 646–649

    Article  CAS  PubMed  Google Scholar 

  23. Mueller H . Tumor necrosis factor as an antineoplastic agent: pitfalls and promises Cell Mol Life Sci 1998 54: 1291–1298

    Article  CAS  PubMed  Google Scholar 

  24. Sauthoff H, Pipiya T, Heitner S et al. Late expression of p53 from a replicating adenovirus improves tumor cell killing and is more tumor cell specific than expression of the adenoviral death protein Hum Gene Ther 2002 (In press)

  25. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy Cancer Res 1986 46: 5276–5281

    CAS  PubMed  Google Scholar 

  26. Stribbling SM, Friedlos F, Martin J et al. Regressions of established breast carcinoma xenografts by carboxypeptidase G2 suicide gene therapy and the prodrug CMDA are due to a bystander effect Hum Gene Ther 2000 11: 285–292

    Article  CAS  PubMed  Google Scholar 

  27. Knox RJ . Gene-directed enzyme prodrug therapy (GDEPT) — recognizing the present limitations of gene therapy for the treatment of cancer Curr Opin Invest Drugs 2001 2: 835–838

    CAS  Google Scholar 

  28. Freytag SO, Kim JH, Khil MS et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for local recurrence of prostate cancer Proc Am Assoc Cancer Res 2002 43: (Abstract 5429)

  29. Hawkins LK, Hermiston T . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the E3B region Gene Ther 2001 8: 1142–1148

    Article  CAS  PubMed  Google Scholar 

  30. van Dillen IJ, Mulder NH, Vaalburg W, de Vries EF, Hospers GA . Influence of the bystander effect on HSV-tk/GCV gene therapy. A review Curr Gene Ther 2002 2: 307–322

    Article  CAS  PubMed  Google Scholar 

  31. Ichikawa T, Chiocca EA . Comparative analyses of transgene delivery and expression in tumors inoculated with a replication-conditional or defective viral vector Cancer Res 2001 61: 5336–5339

    CAS  PubMed  Google Scholar 

  32. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH . A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy Hum Gene Ther 1998 9: 1323–1333

    Article  CAS  PubMed  Google Scholar 

  33. Wildner O, Morris JC . Therapy of peritoneal carcinomatosis from colon cancer with oncolytic adenoviruses J Gene Med 2000 2: 353–360

    Article  CAS  PubMed  Google Scholar 

  34. McCart JA, Puhlmann M, Lee J et al. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression Gene Ther 2000 7: 1217–1223

    Article  CAS  PubMed  Google Scholar 

  35. Ichikawa T, Petros WP, Ludeman SM et al. Intraneoplastic polymer-based delivery of cyclophosphamide for intratumoral bioconversion by a replicating oncolytic viral vector Cancer Res 2001 61: 864–868

    CAS  PubMed  Google Scholar 

  36. Lee YJ, Galoforo SS, Battle P et al. Replicating adenoviral vector-mediated transfer of a heat-inducible double suicide gene for gene therapy Cancer Gene Ther 2001 8: 397–404

    Article  CAS  PubMed  Google Scholar 

  37. Nemunaitis J, Swisher SG, Timmons T et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer J Clin Oncol 2000 18: 609–622

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez-Prieto R, Quintanilla M, Cano A et al. Carcinoma cell lines become sensitive to DNA-damaging agents by the expression of the adenovirus E1A gene Oncogene 1996 13: 1083–1092

    PubMed  Google Scholar 

  39. Toyoizumi T, Mick R, Abbas AE et al. Combined therapy with chemotherapeutic agents and herpes simplex virus type 1 ICP34.5 mutant (HSV-1716) in human non-small cell lung cancer Hum Gene Ther 1999 10: 3013–3029

    Article  CAS  PubMed  Google Scholar 

  40. You L, Yang CT, Jablons DM . ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients Cancer Res 2000 60: 1009–1013

    CAS  PubMed  Google Scholar 

  41. Folkman J . Tumor angiogenesis Adv Cancer Res 1985 43: 175–203

    Article  CAS  PubMed  Google Scholar 

  42. Folkman J . What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990 82: 4–6

    Article  CAS  PubMed  Google Scholar 

  43. Thompson WD, Li WW, Maragoudakis M . The clinical manipulation of angiogenesis: pathology, side-effects, surprises, and opportunities with novel human therapies J Pathol 2000 190: 330–337

    Article  CAS  PubMed  Google Scholar 

  44. Folkman J . Therapeutic angiogenesis in ischemic limbs Circulation 1998 97: 1108–1110

    Article  CAS  PubMed  Google Scholar 

  45. Denekamp J . Vascular attack as a therapeutic strategy for cancer Cancer Metastasis Rev 1990 9: 267–282

    Article  CAS  PubMed  Google Scholar 

  46. St Croix B, Rago C, Velculescu V et al. Genes expressed in human tumor endothelium Science 2000 289: 1197–1202

    Article  CAS  PubMed  Google Scholar 

  47. Talks KL, Harris AL . Current status of antiangiogenic factors Br J Haematol 2000 109: 477–489

    Article  CAS  PubMed  Google Scholar 

  48. Feldman AL, Libutti SK . Progress in antiangiogenic gene therapy of cancer Cancer 2000 89: 1181–1194

    Article  CAS  PubMed  Google Scholar 

  49. Kleinman HK, Liau G . Gene therapy for antiangiogenesis J Natl Cancer Inst 2001 93: 965–967

    Article  CAS  PubMed  Google Scholar 

  50. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D . Effects of angiogenesis inhibitors on multistage carcinogenesis in mice Science 1999 284: 808–812

    Article  CAS  PubMed  Google Scholar 

  51. Coussens LM, Fingleton B, Matrisian LM . Matrix metalloproteinase inhibitors and cancer: trials and tribulations Science 2002 295: 2387–2392

    Article  CAS  PubMed  Google Scholar 

  52. Lund EL, Bastholm L, Kristjansen PE . Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts Clin Cancer Res 2000 6: 971–978

    CAS  PubMed  Google Scholar 

  53. Bello L, Carrabba G, Giussani C et al. Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo Cancer Res 2001 61: 7501–7506

    CAS  PubMed  Google Scholar 

  54. Hood JD, Bednarski M, Frausto R et al. Tumor regression by targeted gene delivery to the neovasculature Science 2002 296: 2404–2407

    Article  CAS  PubMed  Google Scholar 

  55. Savontaus MJ, Sauter BV, Huang TG, Woo SL . Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells Gene Ther 2002 9: 972–979

    Article  CAS  PubMed  Google Scholar 

  56. Steinman RM . The dendritic cell system and its role in immunogenicity Annu Rev Immunol 1991 9: 271–296

    Article  CAS  PubMed  Google Scholar 

  57. Steinman RM . Dendritic cells and immune-based therapies Exp Hematol 1996 24: 859–862

    CAS  PubMed  Google Scholar 

  58. Steinman RM, Pack M, Inaba K . Dendritic cell development and maturation Adv Exp Med Biol 1997 417: 1–6

    Article  CAS  PubMed  Google Scholar 

  59. Lanzavecchia A . Identifying strategies for immune intervention Science 1993 260: 937–944

    Article  CAS  PubMed  Google Scholar 

  60. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  61. Dallal RM, Lotze MT . Immunotherapy of metastasis Surg Oncol Clin North Am 2001 10: 433–447, xi

    Article  CAS  PubMed  Google Scholar 

  62. Caux C, Massacrier C, Vanbervliet B et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte–macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis Blood 1997 90: 1458–1470

    CAS  PubMed  Google Scholar 

  63. Young JW, Szabolcs P, Moore MA . Identification of dendritic cell colony-forming units among normal human CD34+ one marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha J Exp Med 1995 182: 1111–1119

    Article  CAS  PubMed  Google Scholar 

  64. Chinnaiyan AM, Hanna WL, Orth K et al. Cytotoxic T-cell–derived granzyme B activates the apoptotic protease ICE-LAP3 Curr Biol 1996 6: 897–899

    Article  CAS  PubMed  Google Scholar 

  65. Froelich CJ, Dixit VM, Yang X . Lymphocyte granule–mediated apoptosis: matters of viral mimicry and deadly proteases Immunol Today 1998 19: 30–36

    Article  CAS  PubMed  Google Scholar 

  66. Alderson MR, Tough TW, Davis-Smith T et al. Fas ligand mediates activation-induced cell death in human T lymphocytes J Exp Med 1995 181: 71–77

    Article  CAS  PubMed  Google Scholar 

  67. Lynch DH, Alderson MR, Ramsdell F . Immunoregulatory effects of Fas-mediated signalling J Cell Biochem 1996 60: 39–46

    Article  CAS  PubMed  Google Scholar 

  68. Dranoff G . Tumor immunology: immune recognition and tumor protection Curr Opin Immunol 2002 14: 161–164

    Article  CAS  Google Scholar 

  69. Vicari AP, Caux C . Chemokines in cancer Cytokine Growth Factor Rev 2002 13: 143–154

    Article  CAS  PubMed  Google Scholar 

  70. Vicari AP, Caux C, Trinchieri G . Tumour escape from immune surveillance through dendritic cell inactivation Semin Cancer Biol 2002 12: 33–42

    Article  CAS  PubMed  Google Scholar 

  71. Hellstrom I, Hellstrom KE . Tumor immunology: an overview Ann NY Acad Sci 1993 690: 24–33

    Article  CAS  PubMed  Google Scholar 

  72. Hellstrom KE, Hellstrom I, Linsley P, Chen L . On the role of costimulation in tumor immunity Ann NY Acad Sci 1993 690: 225–230

    Article  CAS  PubMed  Google Scholar 

  73. Nakagomi H, Petersson M, Magnusson I et al. Decreased expression of the signal-transducing zeta chains in tumor-infiltrating T-cells and NK cells of patients with colorectal carcinoma Cancer Res 1993 53: 5610–5612

    CAS  PubMed  Google Scholar 

  74. Finke JH, Zea AH, Stanley J et al. Loss of T-cell receptor zeta chain and p56lck in T-cells infiltrating human renal cell carcinoma Cancer Res 1993 53: 5613–5616

    CAS  PubMed  Google Scholar 

  75. Ferrone S, Marincola FM . Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance Immunol Today 1995 16: 487–494

    Article  CAS  PubMed  Google Scholar 

  76. Seliger B, Maeurer MJ, Ferrone S . TAP off-tumors on Immunol Today 1997 18: 292–299

    CAS  PubMed  Google Scholar 

  77. Hersey P . Impediments to successful immunotherapy Pharmacol Ther 1999 81: 111–119

    Article  CAS  PubMed  Google Scholar 

  78. Morford LA, Elliott LH, Carlson SL, Brooks WH, Roszman TL . T cell receptor–mediated signaling is defective in T cells obtained from patients with primary intracranial tumors J Immunol 1997 159: 4415–4425

    CAS  PubMed  Google Scholar 

  79. Sogn JA . Tumor immunology: the glass is half full Immunity 1998 9: 757–763

    Article  CAS  PubMed  Google Scholar 

  80. Ling W, Rayman P, Uzzo R et al. Impaired activation of NFkappaB in T cells from a subset of renal cell carcinoma patients is mediated by inhibition of phosphorylation and degradation of the inhibitor, IkappaBalpha Blood 1998 92: 1334–1341

    CAS  PubMed  Google Scholar 

  81. Drake CG, Pardoll DM . Tumor immunology — towards a paradigm of reciprocal research Semin Cancer Biol 2002 12: 73–80

    Article  CAS  PubMed  Google Scholar 

  82. Pardoll DM . Spinning molecular immunology into successful immunotherapy Nat Rev Immunol 2002 2: 227–238

    Article  CAS  PubMed  Google Scholar 

  83. O'Connell J, Bennett MW, O'Sullivan GC, Collins JK, Shanahan F . Resistance to Fas (APO-1/CD95)–mediated apoptosis and expression of Fas ligand in esophageal cancer: the Fas counterattack Dis Esophagus 1999 12: 83–89

    Article  CAS  PubMed  Google Scholar 

  84. Dong H, Strome SE, Salomao DR et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion Nat Med 2002 8: 793–800

    Article  CAS  PubMed  Google Scholar 

  85. Gimmi CD, Morrison BW, Mainprice BA et al. Breast cancer-associated antigen, DF3/MUC1, induces apoptosis of activated human T cells Nat Med 1996 2: 1367–1370

    Article  CAS  PubMed  Google Scholar 

  86. Moss B . Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety Proc Natl Acad Sci USA 1996 93: 11341–11348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Andreansky S, He B, van Cott J et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins Gene Ther 1998 5: 121–130

    Article  CAS  PubMed  Google Scholar 

  88. Kurihara T, Brough DE, Kovesdi I, Kufe DW . Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen J Clin Invest 2000 106: 763–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wong RJ, Patel SG, Kim S et al. Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma Hum Gene Ther 2001 12: 253–265

    Article  CAS  PubMed  Google Scholar 

  90. Bennett JJ, Malhotra S, Wong RJ et al. Interleukin 12 secretion enhances antitumor efficacy of oncolytic herpes simplex viral therapy for colorectal cancer Ann Surg 2001 233: 819–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hawkins LK, Johnson L, Bauzon M et al. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7 K/gp19 K region Gene Ther 2001 8: 1123–1131

    Article  CAS  PubMed  Google Scholar 

  92. Heriot AG, Marriott JB, Cookson S, Kumar D, Dalgleish AG . Reduction in cytokine production in colorectal cancer patients: association with stage and reversal by resection Br J Cancer 2000 82: 1009–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Roizman B . The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors Proc Natl Acad Sci USA 1996 93: 11307–11312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kiessling R, Wasserman S, Horiguchi S et al. Tumor-induced immune dysfunction Cancer Immunol Immunother 1999 48: 353–362

    Article  CAS  PubMed  Google Scholar 

  95. Li E, Stupack D, Bokuch GM, Nemerow GR . Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases J Virol 1998 72: 8806–8812

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Roymans D, Slegers H . Phosphatidylinositol 3-kinases in tumor progression Eur J Biochem 2001 268: 487–498

    Article  CAS  PubMed  Google Scholar 

  97. Hawkins LK, Hermiston TW . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the ADP region Gene Ther 2001 8: 1132–1141

    Article  CAS  PubMed  Google Scholar 

  98. Nanda D, Vogels R, Havenga M et al. Treatment of malignant gliomas with a replicating adenoviral vector expressing herpes simplex virus-thymidine kinase Cancer Res 2001 61: 8743–8750

    CAS  PubMed  Google Scholar 

  99. Katso R, Okkenhaug K, Ahmadi K et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer Annu Rev Cell Dev Biol 2001 17: 615–675

    Article  CAS  PubMed  Google Scholar 

  100. Berrie CP . Phosphoinositide 3-kinase inhibition in cancer treatment Expert Opin Invest Drugs 2001 10: 1085–1098

    Article  CAS  Google Scholar 

  101. Hawkins LK, Lemoine NR, Kirn D . Oncolytic biotherapy: a novel therapeutic platform Lancet Oncol 2002 3: 17–26

    Article  CAS  PubMed  Google Scholar 

  102. Kirn D, Martuza RL, Zwiebel J . Replication-selective virotherapy for cancer: biological principles, risk management and future directions Nat Med 2001 7: 781–787

    Article  CAS  PubMed  Google Scholar 

  103. Timiryasova TM, Li J, Chen B et al. Antitumor effect of vaccinia virus in glioma model Oncol Res 1999 11: 133–144

    CAS  PubMed  Google Scholar 

  104. Coffey MC, Strong JE, Forsyth PA, Lee PW . Reovirus therapy of tumors with activated Ras pathway Science 1998 282: 1332–1334

    Article  CAS  PubMed  Google Scholar 

  105. Stojdl DF, Lichty B, Knowles S et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus Nat Med 2000 6: 821–825

    Article  CAS  PubMed  Google Scholar 

  106. Ganly I, Kirn D, Eckhardt G et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer Clin Cancer Res 2000 6: 798–806

    CAS  PubMed  Google Scholar 

  107. Vasey PA, Shulman LN, Campos S et al. Phase I trial of intraperitoneal injection of the E1B–55-kd-gene–deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer J Clin Oncol 2002 20: 1562–1569

    CAS  PubMed  Google Scholar 

  108. Bischoff JR, Kirn DH, Williams A et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells Science 1996 274: 373–376

    Article  CAS  PubMed  Google Scholar 

  109. Mulvihill S, Warren R, Venook A et al. Safety and feasibility of injection with an E1B–55 kDa gene–deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial Gene Ther 2001 8: 308–315

    Article  CAS  PubMed  Google Scholar 

  110. Habib N, Salama H, Abd El Latif Abu Median A et al. Clinical trial of E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma Cancer Gene Ther 2002 9: 254–259

    Article  CAS  PubMed  Google Scholar 

  111. Freytag SO, Khil M, Stricker H et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer Cancer Res 2002 62: 4968–4976

    CAS  PubMed  Google Scholar 

  112. Wildner O, Blaese RM, Morris JC . Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase Cancer Res 1999 59: 410–413

    CAS  PubMed  Google Scholar 

  113. Heise C, Hermiston T, Johnson L et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy Nat Med 2000 6: 1134–1139

    Article  CAS  PubMed  Google Scholar 

  114. Fueyo J, Gomez-Manzano C, Alemany R et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo Oncogene 2000 19: 2–12

    Article  CAS  PubMed  Google Scholar 

  115. Suzuki K, Fueyo J, Krasnykh V et al. A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency Clin Cancer Res 2001 7: 120–126

    CAS  PubMed  Google Scholar 

  116. Howe JA, Demers GW, Johnson DE et al. Evaluation of E1-mutant adenoviruses as conditionally replicating agents for cancer therapy Mol Ther 2000 2: 485–495

    Article  CAS  PubMed  Google Scholar 

  117. Doronin K, Toth K, Kuppuswamy M et al. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein J Virol 2000 74: 6147–6155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Doronin K, Kuppuswamy M, Toth K et al. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy J Virol 2001 75: 3314–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. DeWeese TL, van der Poel H, Li S et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy Cancer Res 2001 61: 7464–7472

    CAS  PubMed  Google Scholar 

  120. Chen Y, DeWeese T, Dilley J et al. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity Cancer Res 2001 61: 5453–5460

    CAS  PubMed  Google Scholar 

  121. Yu DC, Chen Y, Dilley J et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel Cancer Res 2001 61: 517–525

    CAS  PubMed  Google Scholar 

  122. Fuerer C, Iggo R . Adenoviruses with Tcf binding sites in multiple early promoters show enhanced selectivity for tumour cells with constitutive activation of the wnt signalling pathway Gene Ther 2002 9: 270–281

    Article  CAS  PubMed  Google Scholar 

  123. Johnson L, Shen A, Boyle L et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents Cancer Cell 2002 1: 325–337

    Article  CAS  PubMed  Google Scholar 

  124. Hallenbeck PL, Chang YN, Hay C et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma Hum Gene Ther 1999 10: 1721–1733

    Article  CAS  PubMed  Google Scholar 

  125. Nettelbeck DM, Rivera AA, Balague C, Alemany R, Curiel DT . Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter Cancer Res 2002 62: 4663–4670

    CAS  PubMed  Google Scholar 

  126. Ramachandra M, Rahman A, Zou A et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy Nat Biotechnol 2001 19: 1035–1041

    Article  CAS  PubMed  Google Scholar 

  127. Tsukuda K, Wiewrodt R, Molnar-Kimber K, Jovanovic VP, Amin KM . An E2F-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumoral efficacy but no toxicity to normal cell Cancer Res 2002 62: 3438–3447

    CAS  PubMed  Google Scholar 

  128. Takahashi M, Sato T, Sagawa T et al. E1B–55K–deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-producing hepatocellular carcinoma and eradication of established tumor Mol Ther 2002 5: 627–634 (Part 1)

    Article  CAS  PubMed  Google Scholar 

  129. Fabra A, Parada C, Vinyals A et al. Intravascular injections of a conditional replicative adenovirus (adl118) prevent metastatic disease in human breast carcinoma xenografts Gene Ther 2001 8: 1627–1634

    Article  CAS  PubMed  Google Scholar 

  130. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL . Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas Nat Med 1995 1: 938–943

    Article  CAS  PubMed  Google Scholar 

  131. MacLean AR, ul-Fareed M, Robertson L, Harland J, Brown SM . Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the “a” sequence J Gen Virol 1991 72: 631–639

    Article  CAS  PubMed  Google Scholar 

  132. Delman KA, Bennett JJ, Zager JS et al. Effects of preexisting immunity on the response to herpes simplex–based oncolytic viral therapy Hum Gene Ther 2000 11: 2465–2472

    Article  CAS  PubMed  Google Scholar 

  133. Pyles RB, Warnick RE, Chalk CL, Szanti BE, Parysek LM . A novel multiply-mutated HSV-1 strain for the treatment of human brain tumors Hum Gene Ther 1997 8: 533–544

    Article  CAS  PubMed  Google Scholar 

  134. Parker LP, Wolf JK, Price JE . Adenoviral-mediated gene therapy with Ad5CMVp53 and Ad5CMVp21 in combination with standard therapies in human breast cancer cell lines Ann Clin Lab Sci 2000 30: 395–405

    CAS  PubMed  Google Scholar 

  135. Fu X, Zhang X . Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype Cancer Res 2002 62: 2306–2312

    CAS  PubMed  Google Scholar 

  136. Chase M, Chung RY, Chiocca EA . An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy Nat Biotechnol 1998 16: 444–448

    Article  CAS  PubMed  Google Scholar 

  137. Pawlik TM, Nakamura H, Mullen JT et al. Prodrug bioactivation and oncolysis of diffuse liver metastases by a herpes simplex virus 1 mutant that expresses the CYP2B1 transgene Cancer 2002 95: 1171–1181

    Article  CAS  PubMed  Google Scholar 

  138. Mineta T, Rabkin SD, Martuza RL . Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant Cancer Res 1994 54: 3963–3966

    CAS  PubMed  Google Scholar 

  139. Boviatsis EJ, Park JS, Sena-Esteves M et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene Cancer Res 1994 54: 5745–5751

    CAS  PubMed  Google Scholar 

  140. Todo T, Martuza RL, Rabkin SD, Johnson PA . Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing Proc Natl Acad Sci USA 2001 98: 6396–6401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Miyatake S, Iyer A, Martuza RL, Rabkin SD . Transcriptional targeting of herpes simplex virus for cell-specific replication J Virol 1997 71: 5124–5132

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM . Experimental therapy of human glioma by means of a genetically engineered virus mutant Science 1991 252: 854–856

    Article  CAS  PubMed  Google Scholar 

  143. Chung RY, Saeki Y, Chiocca EA . B-myb promoter retargeting of herpes simplex virus gamma34.5 gene-mediated virulence toward tumor and cycling cells J Virol 1999 73: 7556–7564

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Nakamura H, Mullen JT, Chandrasekhar S et al. Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil Cancer Res 2001 61: 5447–5452

    CAS  PubMed  Google Scholar 

  145. Markert JM, Malick A, Coen DM, Martuza RL . Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir Neurosurgery 1993 32: 597–603

    Article  CAS  PubMed  Google Scholar 

  146. Whitman ED, Tsung K, Paxson J, Norton JA . In vitro and in vivo kinetics of recombinant vaccinia virus cancer-gene therapy Surgery 1994 116: 183–188

    CAS  PubMed  Google Scholar 

  147. Puhlmann M, Gnant M, Brown CK, Alexander HR, Bartlett DL . Thymidine kinase–deleted vaccinia virus expressing purine nucleoside phosphorylase as a vector for tumor-directed gene therapy Hum Gene Ther 1999 10: 649–657

    Article  CAS  PubMed  Google Scholar 

  148. Peplinski GR, Tsung K, Meko JB, Norton JA . Prevention of murine breast cancer by vaccination with tumor cells modified by cytokine-producing recombinant vaccinia viruses Ann Surg Oncol 1996 3: 15–23

    Article  CAS  PubMed  Google Scholar 

  149. Peplinski GR, Tsung K, Casey MJ et al. In vivo murine tumor gene delivery and expression by systemic recombinant vaccinia virus encoding interleukin-1beta Cancer J Sci Am 1996 2: 21

    CAS  PubMed  Google Scholar 

  150. Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC et al. Intratumoral recombinant GM-CSF–encoding virus as gene therapy in patients with cutaneous melanoma Cancer Gene Ther 1999 6: 409–422

    Article  CAS  PubMed  Google Scholar 

  151. Gnant MF, Puhlmann M, Alexander HR Jr, Bartlett DL . Systemic administration of a recombinant vaccinia virus expressing the cytosine deaminase gene and subsequent treatment with 5-fluorocytosine leads to tumor-specific gene expression and prolongation of survival in mice Cancer Res 1999 59: 3396–3403

    CAS  PubMed  Google Scholar 

  152. Mukherjee S, Haenel T, Himbeck R et al. Replication-restricted vaccinia as a cytokine gene therapy vector in cancer: persistent transgene expression despite antibody generation Cancer Gene Ther 2000 7: 663–670

    Article  CAS  PubMed  Google Scholar 

  153. Hodge JW, Sabzevari H, Yafal AG et al. A triad of costimulatory molecules synergize to amplify T-cell activation Cancer Res 1999 59: 5800–5807

    CAS  PubMed  Google Scholar 

  154. McCart JA, Ward JM, Lee J et al. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes Cancer Res 2001 61: 8751–8757

    CAS  PubMed  Google Scholar 

  155. Norman KL, Coffey MC, Hirasawa K et al. Reovirus oncolysis of human breast cancer Hum Gene Ther 2002 13: 641–652

    Article  CAS  PubMed  Google Scholar 

  156. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E . Intergeneric poliovirus recombinants for the treatment of malignant glioma Proc Natl Acad Sci USA 2000 97: 6803–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Balachandran S, Porosnicu M, Barber GN . Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, Ras, or myc function and involves the induction of apoptosis J Virol 2001 75: 3474–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Peng KW, TenEcyck CJ, Galanis E et al. Intraperitoneal therapy of ovarian cancer using an engineered measles virus Cancer Res 2002 62: 4656–4662

    CAS  PubMed  Google Scholar 

  159. Peng KW, Ahmann GJ, Pham L et al. Systemic therapy of myeloma xenografts by an attenuated measles virus Blood 2001 98: 2002–2007

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry W Hermiston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermiston, T., Kuhn, I. Armed therapeutic viruses: Strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther 9, 1022–1035 (2002). https://doi.org/10.1038/sj.cgt.7700542

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700542

Keywords

This article is cited by

Search

Quick links