Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Role of the adaptor protein LNK in normal and malignant hematopoiesis

Abstract

The signal transduction pathways, orchestrating the differentiation of hematopoietic stem and progenitor cells in response to cytokine stimulation, are strictly controlled by networks of feedback loops, highly selective protein interactions and finely tuned on/off switches. In hematological malignancies, the aberrant activation of signaling pathways is usually associated with mutations in tyrosine kinases. Recently, the role of negative signaling regulators is increasingly being recognized as an alternative mechanism involved in diseases such as leukemias and myeloproliferative neoplasms (MPNs). The adaptor protein LNK (Src homology 2 (SH2)B3) is a negative regulator of cytokine signaling that has an essential, nonredundant role in normal hematopoiesis. Indeed, LNK-deficient mice show marked expansion of early hematopoietic precursors, more mature myeloid and B-lineage lymphoid cells, as well as enhanced hematopoietic reconstitution. Murine models show that loss of LNK enhances the development of MPNs and may have a role in additional pathologies. LNK mutations were recently identified in patients with MPNs, and studies in animal models and hematopoietic cell lines suggest that LNK controls the aberrant signaling pathways induced by activated oncogenic kinases. In addition, genome-wide studies show that LNK is associated with autoimmune and cardiovascular disorders. These findings have implications for the future study of hematopoiesis, as well as for the development of novel stem cell and disease-specific therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Toffalini F, Demoulin JB . New insights into the mechanisms of hematopoietic cell transformation by activated receptor tyrosine kinases. Blood 2010; 116: 2429–2437.

    Article  CAS  PubMed  Google Scholar 

  2. Jatiani SS, Baker SJ, Silverman LR, Reddy EP . Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer 2010; 1: 979–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takaki S, Morita H, Tezuka Y, Takatsu K . Enhanced hematopoiesis by hematopoietic progenitor cells lacking intracellular adaptor protein, Lnk. J Exp Med 2002; 195: 151–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Velazquez L, Cheng AM, Fleming HE, Furlonger C, Vesely S, Bernstein A et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med 2002; 195: 1599–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y, Gibbs KD et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 2010; 116: 988–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oh ST, Zahn JM, Jones CD, Zhang B, Loh ML, Kantarjian HM et al. Identification of novel LNK mutations in patients with chronic myeloproliferative neoplasms and related disorders. Blood 2010; 116: (abstract 315).

  7. Pardanani A, Lasho T, Finke C, Oh ST, Gotlib J, Tefferi ALNK . mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia 2010; 24: 1713–1718.

    Article  CAS  PubMed  Google Scholar 

  8. Lasho TL, Pardanani A, Tefferi ALNK . mutations in JAK2 mutation-negative erythrocytosis. N Engl J Med 2010; 363: 1189–1190.

    Article  CAS  PubMed  Google Scholar 

  9. Baran-Marszak F, Magdoud H, Desterke C, Alvarado A, Roger C, Harel S et al. Expression level and differential JAK2-V617F-binding of the adaptor protein Lnk regulates JAK2-mediated signals in myeloproliferative neoplasms. Blood 2010; 116: 5961–5971.

    Article  PubMed  Google Scholar 

  10. Lasho TL, Tefferi A, Finke C, Pardanani A . Clonal hierarchy and allelic mutation segregation in a myelofibrosis patient with two distinct LNK mutations. Leukemia 2011; 25: 1056–1058.

    Article  CAS  PubMed  Google Scholar 

  11. Hurtado C, Erquiaga I, Aranaz P, Miguéliz I, García-Delgado M, Novo FJ et al. LNK can also be mutated outside PH and SH2 domains in myeloproliferative neoplasms with and without V617FJAK2 mutation. Leuk Res 2011; 35: 1537–1539.

    Article  CAS  PubMed  Google Scholar 

  12. Ha JS, Jeon DS . Possible new LNK mutations in myeloproliferative neoplasms. Am J Hematol 2011; 86: 866–868.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukemia. Nature 2012; 481: 157–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dhe-Paganon S, Werner ED, Nishi M, Hansen L, Chi YI, Shoelson SE . A phenylalanine zipper mediates APS dimerization. Nat Struct Mol Biol 2004; 11: 968–974.

    Article  CAS  PubMed  Google Scholar 

  15. Maures TJ, Kurzer JH, Carter-Su C . SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other. Trends Endocrinol Metab 2007; 18: 38–45.

    Article  CAS  PubMed  Google Scholar 

  16. Devallière J, Charreau B . The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem Pharmacol 2011; 15: 1391–1402.

    Article  Google Scholar 

  17. Morris DL, Cho KW, Rui L . Critical role of the Src homology 2 (SH2) domain of neuronal SH2B1 in the regulation of body weight and glucose homeostasis in mice. Endocrinology 2010; 151: 3643–3651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li M, Ren D, Iseki M, Takaki S, Rui L . Differential role of SH2-B and APS in regulating energy and glucose homeostasis. Endocrinology 2006; 147: 2163–2170.

    Article  CAS  PubMed  Google Scholar 

  19. Huang X, Li Y, Tanaka K, Moore KG, Hayashi JI . Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase C gamma 1, Grb2, and phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 1995; 92: 11618–11622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ema H, Sudo K, Seita J, Matsubara A, Morita Y, Osawa M et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev Cell 2005; 8: 907–914.

    Article  CAS  PubMed  Google Scholar 

  21. Takizawa H, Kubo-Akashi C, Nobuhisa I, Kwon SM, Iseki M, Taga T et al. Enhanced engraftment of hematopoietic stem/progenitor cells by the transient inhibition of an adaptor protein, Lnk. Blood 2006; 107: 2968–2975.

    Article  CAS  PubMed  Google Scholar 

  22. Buza-Vidas N, Antonchuk J, Qian H, Månsson R, Luc S, Zandi S et al. Cytokines regulate postnatal hematopoietic stem cell expansion: opposing roles of thrombopoietin and LNK. Genes Dev 2006; 20: 2018–2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seita J, Ema H, Ooehara J, Yamazaki S, Tadokoro Y, Yamasaki A et al. Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction. Proc Natl Acad Sci USA 2007; 104: 2349–2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bersenev A, Wu C, Balcerek J, Tong W . Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. J Clin Invest 2008; 118: 2832–2844.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tong W, Zhang J, Lodish HF . Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood 2005; 105: 4604–4612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tong W, Lodish HF . Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med 2004; 200: 569–580.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Takizawa H, Nishimura S, Takayama N, Oda A, Nishikii H, Morita Y et al. Lnk regulates integrin alphaIIbbeta3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. J Clin Invest 2010; 120: 179–190.

    Article  CAS  PubMed  Google Scholar 

  28. Takizawa H, Eto K, Yoshikawa A, Nakauchi H, Takatsu K, Takaki S . Growth and maturation of megakaryocytes is regulated by Lnk/Sh2b3 adaptor protein through crosstalk between cytokine- and integrin-mediated signals. Exp Hematol 2008; 36: 897–906.

    Article  CAS  PubMed  Google Scholar 

  29. Simon C, Dondi E, Chaix A, de Sepulveda P, Kubiseski TJ, Varin-Blank N et al. Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood 2008; 112: 4039–4047.

    Article  CAS  PubMed  Google Scholar 

  30. Gueller S, Goodridge HS, Niebuhr B, Xing H, Koren-Michowitz M, Serve H et al. Adaptor protein Lnk inhibits c-Fms-mediated macrophage function. J Leukoc Biol 2010; 88: 699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nobuhisa I, Takizawa M, Takaki S, Inoue H, Okita K, Ueno M et al. Regulation of hematopoietic development in the aorta-gonad-mesonephros region mediated by Lnk adaptor protein. Mol Cell Biol 2003; 23: 8486–8494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wan M, Li Y, Xue H, Li Q, Li J . TNF alpha induces Lnk expression through PI3K-dependent signaling pathway in human umbilical vein endothelial cells. J Surg Res 2006; 136: 535–537.

    Article  Google Scholar 

  33. Devallière J, Chatelais M, Fitau J, Gérard N, Hulin P, Velazquez L et al. LNK (SH2B3) is a key regulator of integrin signaling in endothelial cells and targets α-parvin to control cell adhesion and migration 2012; 26: 2592–2606.

  34. Kwon SM, Suzuki T, Kawamoto A, Ii M, Eguchi M, Akimaru H et al. Pivotal role of lnk adaptor protein in endothelial progenitor cell biology for vascular regeneration. Circ Res 2009; 104: 969–1077.

    Article  CAS  PubMed  Google Scholar 

  35. Kamei N, Kwon SM, Alev C, Ishikawa M, Yokoyama A, Nakanishi K et al. Lnk deletion reinforces the function of bone marrow progenitors in promoting neovascularization and astrogliosis following spinal cord injury. Stem Cells 2010; 28: 365–375.

    CAS  PubMed  Google Scholar 

  36. Matsumoto T, Ii M, Nishimura H, Shoji T, Mifune Y, Kawamoto A et al. Lnk-dependent axis of SCF-cKit signal for osteogenesis in bone fracture healing. J Exp Med 2010; 207: 2207–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kurzer JH, Saharinen P, Silvennoinen O, Carter-Su C . Binding of SH2-B family members within a potential negative regulatory region maintains JAK2 in an active state. Mol Cell Biol 2006; 26: 6381–6394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gery S, Cao Q, Gueller S, Xing H, Tefferi A, Koeffler HP . Lnk inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F. J Leukoc Biol 2009; 85: 957–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang J, Balcerek J, Rozenova K, Cheng Y, Bersenev A, Wu C et al. 14-3-3 regulates the LNK/JAK2 pathway in mouse hematopoietic stem and progenitor cells. J Clin Invest 2012. 59719 122: 2079–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gueller S, Gery S, Nowak V, Liu L, Serve H, Koeffler HP . Adaptor protein Lnk associates with Tyr(568) in c-Kit. Biochem J 2008; 415: 241–245.

    Article  CAS  PubMed  Google Scholar 

  41. Gueller S, Hehn S, Nowak V, Gery S, Serve H, Brandts CH et al. Adaptor protein Lnk binds to PDGF receptor and inhibits PDGF-dependent signaling. Exp Hematol 2011; 39: 591–600.

    Article  CAS  PubMed  Google Scholar 

  42. Lin DC, Yin T, Koren-Michowitz M, Ding LW, Gueller S, Gery S et al. Adaptor protein Lnk binds to and inhibits normal and leukemic Flt3. Blood (e-pub ahead of print 31 August 2012).

  43. Wang TC, Chiu H, Chang YJ, Hsu TY, Chiu IM, Chen L . The adaptor protein SH2B3 (Lnk) negatively regulates neurite outgrowth of PC12 cells and cortical neurons. PLoS One 2011; 6: e26433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  PubMed  Google Scholar 

  45. Tefferi A, Vainchenker W . Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 2011; 29: 573–582.

    Article  CAS  PubMed  Google Scholar 

  46. Gery S, Gueller S, Chumakova K, Kawamata N, Liu L, Koeffler HP . Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders. Blood 2007; 110: 3360–3364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koren-Michowitz M, Gery S, Nowak D, Nagler A, Matsubara A, Tabayashi T et al. Adaptor protein LNK binds to and is phosphorylated by JAK3 and may serve as a scaffold for JAK3 autophosphorylation in the absence of an appropriate cytokine receptor. Blood 2010; 116: (abstract 315).

  48. Gery S, Gueller S, Nowak V, Sohn J, Hofmann WK, Koeffler HP . Expression of the adaptor protein Lnk in leukemia cells. Exp Hematol 2009; 37: e2.

    Article  Google Scholar 

  49. Bersenev A, Wu C, Balcerek J, Jing J, Kundu M, Blobel GA et al. Lnk constrains myeloproliferative diseases in mice. J Clin Invest 2010; 120: 2058–2069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koren-MichowitzM Gery S, Tabyashi T, Lin D, Nagler A, Koeffler HP . The Lnk PH domain point mutations found in patients with MPN are mild partial loss of function mutations with a variable inhibitory effect on WT JAK2 and JAK2 V617F. Haematologica.

  51. Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268–274.

    Article  PubMed  Google Scholar 

  52. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  53. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 2012; 485: 502–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007; 39: 857–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, Yang JH et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 2008; 359: 2767–2777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hunt KA, Zhernakova A, Turner G, Heap GA, Franke L, Bruinenberg M et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet 2008; 40: 395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1228–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Coenen MJ, Trynka G, Heskamp S, Franke B, Van Diemen CC, Smolonska J et al. Common and different genetic background for rheumatoid arthritis and coeliac disease. Hum Mol Genet 2009; 18: 4195–4203.

    Article  CAS  PubMed  Google Scholar 

  59. Alcina A, Vandenbroeck K, Otaegui D, Saiz A, Gonzalez JR, Fernandez O et al. The autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes Immun 2010; 11: 439–445.

    Article  CAS  PubMed  Google Scholar 

  60. Eriksson N, Tung JY, Kiefer AK, Hinds DA, Francke U, Mountain JL et al. Novel associations for hypothyroidism include known autoimmune risk loci. PLoS One 2012; 7: e34442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet 2012; 44: 676–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A et al. Genome-wide association study of blood pressure and hypertension. Nat Genet 2009; 41: 677–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 2009; 41: 666–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gudbjartsson DF, Bjornsdottir US, Halapi E, Helgadottir A, Sulem P, Jonsdottir GM et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet 2009; 41: 342–347.

    Article  CAS  PubMed  Google Scholar 

  65. Lavrikova EY, Nikitin AG, Kuraeva TL, Peterkova VA, Tsitlidze NM, Chistiakov DA et al. The carriage of the type 1 diabetes-associated R262W variant of human LNK correlates with increased proliferation of peripheral blood monocytes in diabetic patients. Pediatr Diabetes 2011; 12: 127–132.

    Article  CAS  PubMed  Google Scholar 

  66. Zhernakova A, Elbers CC, Ferwerda B, Romanos J, Trynka G, Dubois PC et al. Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection. Am J Hum Genet 2010; 86: 970–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McMullin MF, Wu C, Percy MJ, Tong W . A nonsynonymous LNK polymorphism associated with idiopathic erythrocytosis. Am J Hematol 2011; 86: 962–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Looi CY, Imanishi M, Takaki S, Sato M, Chiba N, Sasahara Y et al. Octa-arginine mediated delivery of wild-type Lnk protein inhibits TPO-induced M-MOK megakaryoblastic leukemic cell growth by promoting apoptosis. PLoS One 2011; 6: e23640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dravid G, Zhu Y, Scholes J, Evseenko D, Crooks GM . Dysregulated gene expression during hematopoietic differentiation from human embryonic stem cells. Mol Ther 2011; 19: 768–781.

    Article  CAS  PubMed  Google Scholar 

  70. Ahlenius H, Devaraju K, Monni E, Oki K, Wattananit S, Darsalia V et al. Adaptor protein LNK is a negative regulator of brain neural stem cell proliferation after stroke. J Neurosci 2012; 11: 5151–5164.

    Article  Google Scholar 

  71. Hu J, Hubbard SR . Structural characterization of a novel Cbl phosphotyrosine recognition motif in the APS family of adapter proteins. J Biol Chem 2005; 280: 18943–18949.

    Article  CAS  PubMed  Google Scholar 

  72. Li Y, He X, Schembri-King J, Jakes S, Hayashi J . Cloning and characterization of human Lnk, an adaptor protein with pleckstrin homology and Src homology 2 domains that can inhibit T cell activation. J Immunol 2000; 164: 5199–51206.

    Article  CAS  PubMed  Google Scholar 

  73. He X, Li Y, Schembri-King J, Jakes S, Hayashi J . Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein. Mol Immunol 2000; 37: 603–612.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported in part by the NIH grants R01CA026038-32 and U54CA143930, as well as A * STAR Grant and the Mary Barry Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Gery.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gery, S., Koeffler, H. Role of the adaptor protein LNK in normal and malignant hematopoiesis. Oncogene 32, 3111–3118 (2013). https://doi.org/10.1038/onc.2012.435

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.435

Keywords

This article is cited by

Search

Quick links