Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

α4 is highly expressed in carcinogen-transformed human cells and primary human cancers

Abstract

A regulator of the protein phosphatase 2A (PP2A), α4, has been implicated in a variety of functions that regulate many cellular processes. To explore the role of α4 in human cell transformation and tumorigenesis, we show that α4 is highly expressed in human cells transformed by chemical carcinogens including benzo(a)pyrene, aflatoxin B1, N-methyl-N′-nitro-N-nitrosoguanidine, nickel sulfate and in several hepatic and lung cancer cell lines. In addition, overexpression of α4 was detected in 87.5% (74/80) of primary hepatocellular carcinomas, 84.0% (21/25) of primary lung cancers and 81.8% (9/11) of primary breast cancers, indicating that α4 is ubiquitously highly expressed in human cancer. Functional studies revealed that elevated α4 expression results in an increase in cell proliferation, promotion of cell survival and decreased PP2A-attributable activity. Importantly, ectopic expression of α4 permits non-transformed human embryonic kidney cells (HEKTER) and L02R cells to form tumors in immunodeficient mice. Furthermore, we show that the highly expressed α4 in transformed cells or human tumors is not regulated by DNA hypomethylation. A microRNA, miR-34b, that suppresses the expression of α4 through specific binding to the 3′-untranslated region of α4 is downregulated in transformed or human lung tumors. Taken together, these observations identify that α4 possesses an oncogenic function. Reduction of PP2A activity due to an enhanced α4–PP2A interaction contributes directly to chemical carcinogen-induced tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arroyo JD, Hahn WC . (2005). Involvement of PP2A in viral and cellular transformation. Oncogene 24: 7746–7755.

    Article  CAS  PubMed  Google Scholar 

  • Bielinski VA, Mumby MC . (2007). Functional analysis of the PP2A subfamily of protein phosphatases in regulating Drosophila S6 kinase. Exp Cell Res 313: 3117–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjornsti MA, Houghton PJ . (2004). The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4: 335–348.

    Article  CAS  PubMed  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17: 1298–1307.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Peterson RT, Schreiber SL . (1998). Alpha 4 associates with protein phosphatases 2A, 4, and 6. Biochem Biophys Res Commun 247: 827–832.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Arroyo JD, Timmons JC, Possemato R, Hahn WC . (2005). Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Res 65: 8183–8192.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC . (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5: 127–136.

    Article  CAS  PubMed  Google Scholar 

  • Colella S, Ohgaki H, Ruediger R, Yang F, Nakamura M, Fujisawa H et al. (2001). Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. Int J Cancer 93: 798–804.

    Article  CAS  PubMed  Google Scholar 

  • Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY . (2007). MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67: 8433–8438.

    Article  CAS  PubMed  Google Scholar 

  • Deichmann M, Polychronidis M, Wacker J, Thome M, Naher H . (2001). The protein phosphatase 2A subunit Bgamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Res 11: 577–585.

    Article  CAS  PubMed  Google Scholar 

  • Di Como CJ, Arndt KT . (1996). Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10: 1904–1916.

    Article  CAS  PubMed  Google Scholar 

  • Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N . (2010). Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta 1804: 433–439.

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn PJ, Creyghton MP, Bernards R . (2009). Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta 1795: 1–15.

    CAS  PubMed  Google Scholar 

  • Gibbons JJ, Abraham RT, Yu K . (2009). Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol 36 (Suppl 3): S3–S17.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg Y . (1999). Protein phosphatase 2A: who shall regulate the regulator? Biochem Pharmacol 57: 321–328.

    Article  CAS  PubMed  Google Scholar 

  • Inui S, Sanjo H, Maeda K, Yamamoto H, Miyamoto E, Sakaguchi N . (1998). Ig receptor binding protein 1 (alpha4) is associated with a rapamycin-sensitive signal transduction in lymphocytes through direct binding to the catalytic subunit of protein phosphatase 2A. Blood 92: 539–546.

    CAS  PubMed  Google Scholar 

  • Irigaray P, Belpomme D . (2010). Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis 31: 135–148.

    Article  CAS  PubMed  Google Scholar 

  • Janssens V, Goris J . (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signaling. Biochem J 353: 417–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji W, Yang L, Yu L, Yuan J, Hu D, Zhang W et al. (2008). Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis 29: 1267–1275.

    Article  CAS  PubMed  Google Scholar 

  • Kong M, Bui TV, Ditsworth D, Gruber JJ, Goncharov D, Krymskaya VP et al. (2007). The PP2A-associated protein alpha4 plays a critical role in the regulation of cell spreading and migration. J Biol Chem 282: 29712–29720.

    Article  CAS  PubMed  Google Scholar 

  • Kong M, Ditsworth D, Lindsten T, Thompson CB . (2009). Alpha4 is an essential regulator of PP2A phosphatase activity. Mol Cell 36: 51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong M, Fox CJ, Mu J, Solt L, Xu A, Cinalli RM et al. (2004). The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science 306: 695–698.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Prickett TD, Elliott E, Meroni G, Brautigan DL . (2001). Phosphorylation and microtubule association of the Opitz syndrome protein mid-1 is regulated by protein phosphatase 2A via binding to the regulatory subunit alpha 4. Proc Natl Acad Sci USA 98: 6650–6655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma RL, Pang YQ, Li WX, Xiao YM, Wei Q, Li DC et al. (2008). Establishment and application of oncogene over expressed human epithelial cell transformation model. Zhonghua Yu Fang Yi Xue Za Zhi 42: 395–399.

    CAS  PubMed  Google Scholar 

  • McConnell JL, Watkins GR, Soss SE, Franz HS, McCorvey LR, Spiller BW et al. (2010). Alpha4 is a ubiquitin-binding protein that regulates protein serine/threonine phosphatase 2A ubiquitination. Biochemistry 49: 1713–1718.

    Article  CAS  PubMed  Google Scholar 

  • McDonald WJ, Sangster SM, Moffat LD, Henderson MJ, Too CK . (2010). Alpha4 phosphoprotein interacts with EDD E3 ubiquitin ligase and poly(A)-binding protein. J Cell Biochem 110: 1123–1129.

    Article  CAS  PubMed  Google Scholar 

  • Meric-Bernstam F, Gonzalez-Angulo AM . (2009). Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27: 2278–2287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumby M . (2007). PP2A: unveiling a reluctant tumor suppressor. Cell 130: 21–24.

    Article  CAS  PubMed  Google Scholar 

  • Murata K, Wu J, Brautigan DL . (1997). B cell receptor-associated protein alpha4 displays rapamycin-sensitive binding directly to the catalytic subunit of protein phosphatase 2A. Proc Natl Acad Sci USA 94: 10624–10629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onda M, Inui S, Maeda K, Suzuki M, Takahashi E, Sakaguchi N . (1997). Expression and chromosomal localization of the human alpha 4/IGBP1 gene, the structure of which is closely related to the yeast TAP42 protein of the rapamycin-sensitive signal transduction pathway. Genomics 46: 373–378.

    Article  CAS  PubMed  Google Scholar 

  • Pang Y, Li W, Ma R, Ji W, Wang Q, Li D et al. (2008). Development of human cell models for assessing the carcinogenic potential of chemicals. Toxicol Appl Pharmacol 232: 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Pigazzi M, Manara E, Baron E, Basso G . (2009). miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res 69: 2471–2478.

    Article  CAS  PubMed  Google Scholar 

  • Prickett TD, Brautigan DL . (2007). Cytokine activation of p38 mitogen-activated protein kinase and apoptosis is opposed by alpha-4 targeting of protein phosphatase 2A for site-specific dephosphorylation of MEK3. Mol Cell Biol 27: 4217–4227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sablina AA, Chen W, Arroyo JD, Corral L, Hector M, Bulmer SE et al. (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell 129: 969–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shouse GP, Nobumori Y, Liu X . (2010). A B56gamma mutation in lung cancer disrupts the p53-dependent tumor-suppressor function of protein phosphatase 2A. Oncogene 29: 3933–3941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smetana JH, Oliveira CL, Jablonka W, Aguiar Pertinhez T, Carneiro FR, Montero-Lomeli M et al. (2006). Low resolution structure of the human alpha4 protein (IgBP1) and studies on the stability of alpha4 and of its yeast ortholog Tap42. Biochim Biophys Acta 1764: 724–734.

    Article  CAS  PubMed  Google Scholar 

  • Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH et al. (2001). MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet 29: 287–294.

    Article  CAS  PubMed  Google Scholar 

  • Virshup DM . (2000). Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol 12: 180–185.

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zhao A, Sun L, Zhong X, Zhong J, Wang H et al. (2008). Protein phosphatase PP4 is overexpressed in human breast and lung tumors. Cell Res 18: 974–977.

    Article  PubMed  Google Scholar 

  • Westermarck J, Hahn WC . (2008). Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med 14: 152–160.

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN . (2006). TOR signaling in growth and metabolism. Cell 124: 471–484.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Roe SM, Prickett TD, Brautigan DL, Barford D . (2007). The structure of Tap42/alpha4 reveals a tetratricopeptide repeat-like fold and provides insights into PP2A regulation. Biochemistry 46: 8807–8815.

    Article  CAS  PubMed  Google Scholar 

  • Yorimitsu T, He C, Wang K, Klionsky DJ . (2009). Tap42-associated protein phosphatase type 2A negatively regulates induction of autophagy. Autophagy 5: 616–624.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Rohde C, Tierling S, Jurkowski TP, Bock C, Santacruz D et al. (2009). DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution. PLoS Genet 5: e1000438.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Richard Possemato for critical reading of the manuscript. This work was supported by a Distinguished Young Scholar of NSFC (30925029), Key Program of NSFC (30630055) and NSFC (30800930, 30771832, 30901211), National Key Basic Research and Development Program (2010CB912803), National High Technology Research and Development Key Program of China (2008AA062504), Ministry of Health of China (200902006), the Fundamental Research Funds for the Central Universities (10ykjc05 and 10lgzd10) and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme GDUPS (2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, LP., Lai, YD., Li, DC. et al. α4 is highly expressed in carcinogen-transformed human cells and primary human cancers. Oncogene 30, 2943–2953 (2011). https://doi.org/10.1038/onc.2011.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.20

Keywords

This article is cited by

Search

Quick links