Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of neurotrophins in central synapse formation and stabilization

Key Points

  • In the central nervous system (CNS), the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and neurotrophin 4 (NT4) were initially characterized for their ability to support neuronal survival and differentiation. However, recent evidence supports further roles for these factors in synapse formation, maturation and stabilization.

  • The neurotrophins bind to two types of receptor: the Trk (tropomyosin receptor kinase) receptors and the p75 receptor. NGF is the preferred ligand for TrkA, BDNF and NT4 bind preferentially to TrkB, and NT3 to TrkC. They can all bind to p75, but it has not been shown clearly whether this receptor is involved in central synapse development.

  • Neurotrophins could act at several levels to regulate synapse number: by promoting synaptogenesis and/or stabilizing existing synapses, and by influencing the maturation of developing synapses. These mechanisms have all been demonstrated experimentally, both for excitatory and for inhibitory synapses.

  • Neurotrophins regulate synaptic vesicle dynamics through different mechanisms in the hippocampus and cerebellum. In the hippocampus, targeted deletion of Bdnf decreases the number of docked vesicles, whereas in the cerebellum, it augments the number of synaptic vesicles that are distant from the active zone. In both cases, the net effect is impaired function of the presynaptic terminal.

  • The structural effects of neurotrophins at the presynaptic terminal also have functional correlates; for example, the increase in the pool of docked synaptic vesicles is essential for rapid synaptic transmission in the hippocampus. Functional properties, such as high-frequency stimulation and paired-pulse facilitation, are impaired in hippocampal and cerebellar synapses of Bdnf-knockout mice.

  • Neurotrophins might regulate the SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins, which control neurotransmitter release. The maturation of the neurotransmitter-release machinery has a prominent role in the transformation of immature synaptic contacts into mature functional synapses. The neurotrophins might also regulate signalling events at the postsynaptic terminal by controlling the surface expression of neurotransmitter receptors.

  • Neurotrophins might control neuronal circuit formation and maturation by activity-independent mechanisms, as well as by interacting with activity-dependent processes.

  • Further studies will be required to elucidate the cellular and molecular mechanisms that mediate the actions of neurotrophins at synapses, and to understand the biological responses to different neurotrophins in excitatory versus inhibitory neurons.

Abstract

The neurotrophins are best known for their ability to support neuronal survival and differentiation, but a role in synapse formation and plasticity has recently emerged. For central neurons, brain-derived neurotrophic factor can increase the number of excitatory and inhibitory synapses by regulating axonal morphology or by directly promoting synapse formation. In addition, neurotrophins promote the maturation and stabilization of the cellular and molecular components that are responsible for neurotransmitter release, and this ultimately leads to an increase in the number of functional synapses. These long-term structural and molecular changes are likely to be crucial not only during development, but also during synaptic plasticity in the adult.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurotrophin effects during the establishment of synaptic circuits.
Figure 2: BDNF and NT3 functional and structural actions at excitatory synapses.
Figure 3: Morphological and synaptic effects of BDNF on GABA-expressing neurons.
Figure 4: Neurotrophin-mediated maturation of neurotransmitter-release machinery at excitatory presynaptic terminals.

Similar content being viewed by others

References

  1. Levi-Montalcini, R. The nerve growth factor 35 years later. Science 237, 1154–1162 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lokhart, S. et al. Nerve growth factor collaborates with myocyte-derived factors to promote development of presynaptic sites in cultured sympathetic neurons. J. Neurobiol. 43, 460–476 (2000).

    Google Scholar 

  4. González, M. et al. Disruption of TrkB-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 24, 567–583 (1999).

    PubMed  Google Scholar 

  5. Patterson, S. et al. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145 (1996).

    CAS  PubMed  Google Scholar 

  6. Kafitz, K. et al. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401, 918–921 (1999).

    CAS  PubMed  Google Scholar 

  7. Kossel, A. H., Cambridge, S. B., Wagner, U. & Bonhoeffer, T. A caged Ab reveals an immediate/instructive effect of BDNF during hippocampal synaptic potentiation. Proc. Natl Acad. Sci. USA 98, 14702–14707 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Poo, M. -M. Neurotrophins as synaptic modulators. Nature Rev. Neurosci. 2, 24–32 (2001).

    CAS  Google Scholar 

  9. Tanaka, T., Saito, H. & Matsuki, N. Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus. J. Neurosci. 17, 2959–2966 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Frerking, M., Malenka, R. C. & Nicoll, R. A. Brain-derived neurotrophic factor (BDNF) modulates inhibitory, but not excitatory, transmission in the CA1 region of the hippocampus. J. Neurophysiol. 80, 3383–3386 (1998).

    CAS  PubMed  Google Scholar 

  11. Brünig, I., Penschuck, S., Berninger, B., Benson, J. & Fritschy, J. -M. BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABAA receptor surface expression. Eur. J. Neurosci. 13, 1320–1328 (2001).

    PubMed  Google Scholar 

  12. Henneberger, C., Jüttner, R., Rothe, T. & Grantyn, R. Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus. J. Neurophysiol. 88, 595–603 (2002).

    CAS  PubMed  Google Scholar 

  13. Schuman, E. M. Neurotrophin regulation of synaptic transmission. Curr. Opin. Neurobiol. 9, 105–109 (1999).

    CAS  PubMed  Google Scholar 

  14. Schinder, A. F. & Poo, M. -M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 23, 639–645 (2000).

    CAS  PubMed  Google Scholar 

  15. Lu, B. & Gottschalk, W. Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. Prog. Brain Res. 128, 231–241 (2000).

    CAS  PubMed  Google Scholar 

  16. Kovalchuk, Y., Hanse, E., Kafitz, K. W. & Konnerth, A. Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295, 1729–1734 (2002).

    CAS  PubMed  Google Scholar 

  17. Yang, B., Slonimsky, J. D. & Birren, S. J. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nature Neurosci. 5, 539–545 (2002).

    CAS  PubMed  Google Scholar 

  18. Klein, R. Role of neurotrophins in mouse neuronal development. FASEB J. 8, 738–744 (1994).

    CAS  PubMed  Google Scholar 

  19. Rocamora, N. et al. Expression of NGF and NT3 mRNAs in hippocampal interneurons innervated by the GABAergic septohippocampal pathway. J. Neurosci. 16, 3991–4004 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fryer, R. et al. Developmental and mature expression of full-length and truncated trkB receptors in the rat forebrain. J. Comp. Neurol. 374, 21–40 (1996).

    CAS  PubMed  Google Scholar 

  21. Martinez, A. et al. TrkB and TrkC signaling are required for maturation and synaptogenesis of hippocampal connections. J. Neurosci. 18, 7336–7350 (1998). The first results to indicate a role for neurotrophin signalling in the regulation of synapse number in the CNS.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Drake, C. T., Milner, T. A. & Patterson, S. L. Ultrastructural localization of full-length trkB immunoreactivity in rat hippocampus suggests multiple roles in modulating activity-dependent synaptic plasticity. J. Neurosci. 19, 8009–8026 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Aoki, C. et al. Localization of brain-derived neurotrophic factor and TrkB receptors to postsynaptic densities of adult rat cerebral cortex. J. Neurosci. Res. 59, 454–463 (2000).

    CAS  PubMed  Google Scholar 

  24. Tyler, W. & Pozzo-Miller, L. D. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J. Neurosci. 21, 4249–4258 (2001). Evidence that BDNF increases the number of docked vesicles at hippocampal excitatory synapses and the frequency of AMPA-mediated EPSCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Carter, A. R., Chen, C., Schwartz, P. M. & Segal, R. A. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J. Neurosci. 22, 1316–1327 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Goodman, L. J. et al. Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol. Cell. Neurosci. 7, 222–238 (1996).

    CAS  PubMed  Google Scholar 

  27. Haubensak, W. et al. BDNF–GFP containing secretory granules are localized in the vicinity of synaptic junctions of cultured cortical neurons. J. Cell Sci. 111, 1483–1493 (1998).

    CAS  PubMed  Google Scholar 

  28. Watson, F. L. et al. Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nature Neurosci. 4, 981–988 (2001).

    CAS  PubMed  Google Scholar 

  29. Howe, C. L., Valletta, J. S., Rusnak, A. S. & Mobley, W. C. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras–MAPK pathway. Neuron 32, 801–814 (2001).

    CAS  PubMed  Google Scholar 

  30. DiStefano, P. S. et al. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8, 983–993 (1992).

    CAS  PubMed  Google Scholar 

  31. von Bartheld, C. S., Byers, M. R., Williams, R. & Bothwell, M. Anterograde transport of neurotrophins and axodendritic transfer in the developing visual system. Nature 379, 830–833 (1996).

    CAS  PubMed  Google Scholar 

  32. Altar, C. A. et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389, 856–860 (1997).

    CAS  PubMed  Google Scholar 

  33. Kohara, K., Kitamura, A., Morishima, M. & Tsumoto, T. Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291, 2419–2423 (2001).

    CAS  PubMed  Google Scholar 

  34. Hartmann, M., Heumann, R. & Lessmann, V. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J. 20, 5887–5897 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, X. X. et al. Mechanisms of the release of anterogradely transported neurotrophin-3 from axon terminals. J. Neurosci. 22, 931–945 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Spalding, K. L. et al. Anterograde transport and trophic actions of BDNF and NT-4/5 in the developing rat visual system. Mol. Cell. Neurosci. 19, 485–500 (2002).

    CAS  PubMed  Google Scholar 

  37. Mowla, S. J. et al. Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci. 19, 2069–2080 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Meyer-Franke, A. et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681–691 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Du, J., Feng, L., Yang, F. & Lu, B. Activity- and Ca2+-dependent modulation of surface expression of brain-derived neurotrophic factor receptors in hippocampal neurons. J. Cell Biol. 150, 1423–1434 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Blöchl, A. & Thoenen, H. Characterization of nerve growth factor (NGF) release from hippocampal neurons: evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur. J. Neurosci. 7, 1220–1228 (1995).

    PubMed  Google Scholar 

  41. Farhadi, H. F. Neurotrophin-3 sorts to the constitutive secretory pathway of hippocampal neurons and is diverted to the regulated secretory pathway by coexpression with brain-derived neurotrophic factor. J. Neurosci. 20, 4059–4068 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Boukhaddaoui, H., Sieso, V., Scamps, F. & Valmier, J. An activity-dependent neurotrophin-3 autocrine loop regulates the phenotype of developing hippocampal pyramidal neurons before target contact. J. Neurosci. 21, 8789–8797 (2001). This study shows that NT3 regulates the differentiation of hippocampal pyramidal neurons through an autocrine loop.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Canossa, M. et al. Neurotrophin release by neurotrophins: implications for activity-dependent neuronal plasticity. Proc. Natl Acad. Sci. USA 94, 13279–13286 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Alderson, R. F., Curtis, R., Alterman, A. L., Lindsay, R. M. & DiStefano, P. S. Truncated TrkB mediates the endocytosis and release of BDNF and neurotrophin-4/5 by rat astrocytes and Schwann cells in vitro. Brain Res. 871, 210–222 (2000).

    CAS  PubMed  Google Scholar 

  45. Ventura, R. & Harris, K. M. Three-dimensional relationship between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pfrieger, F. W. & Barres, B. A. Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684–1687 (1997).

    CAS  PubMed  Google Scholar 

  47. Blondel, O. et al. A glial-derived signal regulating neuronal differentiation. J. Neurosci. 20, 8012–8020 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science 291, 657–661 (2001).

    CAS  PubMed  Google Scholar 

  49. Song, H. -J., Stevens, C. F. & Gage, F. H. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nature Neurosci. 5, 438–445 (2002).

    CAS  PubMed  Google Scholar 

  50. Beattie, E. C. et al. Control of synaptic strength by glial TNFα. Science 295, 2282–2285 (2002).

    CAS  PubMed  Google Scholar 

  51. Lee, R., Kermani, P., Teng, K. K. & Hempstead, B. L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001).

    CAS  PubMed  Google Scholar 

  52. Vaughn, J. E. Review: fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3, 255–285 (1989).

    CAS  PubMed  Google Scholar 

  53. Verderio, C., Coco, S., Pravettoni, E. & Matteoli, M. Synaptogenesis in hippocampal cultures. Cell. Mol. Life Sci. 55, 1448–1462 (1999).

    CAS  PubMed  Google Scholar 

  54. Craig, A. M. & Lichtman, J. W. in Synapses (eds Cowan, W. M., Südhof, T. C. & Stevens, C. F.) 571–612 (Johns Hopkins Univ. Press, 2001).

    Google Scholar 

  55. Ahmari, S. E. & Smith, S. J. Knowing a nascent synapse when you see it. Neuron 34, 333–336 (2002).

    CAS  PubMed  Google Scholar 

  56. Vicario-Abejón, C., Collin, C., McKay, R. D. G. & Segal, M. Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J. Neurosci. 18, 7256–7271 (1998). The first results to show that neurotrophins are involved in the transformation of presynaptically silent synapses into functional ones.

    PubMed  PubMed Central  Google Scholar 

  57. Gasparini, S., Saviane, C., Voronini, L. L. & Cherubini, E. Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release?. Proc. Natl Acad. Sci. USA 97, 9741–9746 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Collin, C. et al. Neurotrophins act at presynaptic terminals to activate synapses among cultured hippocampal neurons. Eur. J. Neurosci. 13, 1273–1282 (2001). Evidence that BDNF and NT3 increase the number of docked vesicles at hippocampal excitatory synapses, and the frequency of AMPA-mediated EPSCs.

    CAS  PubMed  Google Scholar 

  59. Renger, J. J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29, 469–484 (2001).

    CAS  PubMed  Google Scholar 

  60. Cohen-Cory, S. & Fraser, S. E. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 378, 192–196 (1995).

    CAS  PubMed  Google Scholar 

  61. McAllister, A. K., Katz, L. C. & Lo, D. C. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18, 767–778 (1997).

    CAS  PubMed  Google Scholar 

  62. Yacoubian, T. & Lo, D. C. Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nature Neurosci. 3, 342–349 (2000).

    CAS  PubMed  Google Scholar 

  63. Xu, B. et al. Cortical degeneration in the absence of neurotrophin signaling: dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron 26, 233–245 (2000).

    CAS  PubMed  Google Scholar 

  64. Cabelli, R. J., Hohn, A. & Shatz, C. J. Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267, 1662–1666 (1995).

    CAS  PubMed  Google Scholar 

  65. Cabelli, R., Shelton, D., Segal, R. & Shatz, C. Blockade of endogenous ligands of TrkB inhibits formation of ocular dominance columns. Neuron 19, 63–76 (1997).

    CAS  PubMed  Google Scholar 

  66. Lein, E. S. & Shatz, C. J. Rapid regulation of brain-derived neurotrophic factor mRNA within eye-specific circuits during ocular dominance column formation. J. Neurosci. 20, 1470–1483 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Alsina, B., Vu, T. & Cohen-Cory, S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nature Neurosci. 4, 1093–1101 (2001). A clear demonstration that BDNF promotes synapse formation in addition to axonal branching.

    CAS  PubMed  Google Scholar 

  68. Pozzo-Miller, L. D. et al. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J. Neurosci. 19, 4972–4983 (1999). An electrophysiological, structural and molecular analysis of the effects of targeted deletion of Bdnf on hippocampal synapses.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Korte, M. et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl Acad. Sci. USA 92, 8856–8860 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Minichiello, L. et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414 (1999).

    CAS  PubMed  Google Scholar 

  71. Kimura, F., Otsu, Y. & Tsumuto, T. Presynaptically silent synapses: spontaneously active terminals without stimulus-evoked release demonstrated in cortical autapses. J. Neurophysiol. 77, 2805–2815 (1997).

    CAS  PubMed  Google Scholar 

  72. Ma, L., Zablow, L., Kandel, E. & Siegelbaum, S. A. Cyclic AMP induces functional presynaptic boutons in hippocampal CA3–CA1 neuronal cultures. Nature Neurosci. 2, 24–30 (1999).

    CAS  PubMed  Google Scholar 

  73. Sherwood, N. T. & Lo, D. C. Long-term enhancement of central synaptic transmission by chronic brain-derived neurotrophic factor treatment. J. Neurosci. 19, 7025–7036 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bolton, M. M., Pittman, A. J. & Lo, D. C. Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures. J. Neurosci. 20, 3221–3232 (2000). A study showing that long-term BDNF treatment potentiates excitatory and inhibitory neurotransmission through different mechanisms.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fan, G. et al. Knocking the NT4 gene into the BDNF locus rescues BDNF deficient mice and reveals distinct NT4 and BDNF activities. Nature Neurosci. 3, 350–357 (2000).

    CAS  PubMed  Google Scholar 

  76. Tartaglia, N. et al. Protein synthesis-dependent and -independent regulation of hippocampal synapses by brain-derived neurotrophic factor. J. Biol. Chem. 276, 37585–37593 (2001).

    CAS  PubMed  Google Scholar 

  77. Ventimiglia, R., Mather, P., Jones, B. & Lindsay, R. The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur. J. Neurosci. 7, 213–222 (1995).

    CAS  PubMed  Google Scholar 

  78. Marty, S., Berninger, B., Carroll, P. & Thoenen, H. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 16, 565–570 (1996).

    CAS  PubMed  Google Scholar 

  79. Cellerino, A., Pinzón-Duarte, G., Carroll, P. & Kohler, K. Brain-derived neurotrophic factor modulates the development of the dopaminergic network in the rodent retina. J. Neurosci. 18, 3351–3362 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang, Z. J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999). In vivo evidence that BDNF overexpression accelerates the maturation of GABA innervation and inhibition in the mouse visual cortex.

    CAS  PubMed  Google Scholar 

  81. Marty, S., Wehrle, R. & Sotelo, C. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J. Neurosci. 20, 8087–8095 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Seil, F. J. & Drake-Baumann, R. TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J. Neurosci. 20, 5367–5373 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vicario-Abejón, C., Collin, C., Tsoulfas, P. & McKay, R. D. G. Hippocampal stem cells differentiate into excitatory and inhibitory neurons. Eur. J. Neurosci. 12, 677–688 (2000).

    PubMed  Google Scholar 

  84. Yamada, M. K. et al. Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J. Neurosci. 22, 7580–7585 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bao, S., Chen, L., Qiao, X., & Thompson, R. F. Transgenic brain-derived neurotrophic factor modulates a developing cerebellar inhibitory synapse. Learn. Mem. 6, 276–283 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rico, B., Xu, B. & Reichardt, L. F. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nature Neurosci. 5, 225–233 (2002). The first results to indicate an in vivo role for TrkB receptor signalling in the regulation of synapse number in the cerebellum.

    CAS  PubMed  Google Scholar 

  87. Lyons, W. E. et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Natl Acad. Sci. USA 96, 15239–15244 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mozhayeva, M. G., Sara, Y., Liu, X. & Kavalali, E. T. Development of vesicle pools during maturation of hippocampal synapses. J. Neurosci. 22, 654–665 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Südhof, T. C. α-Latrotoxin, and its receptors: neurexins and CIRL/latrophilins. Annu. Rev. Neurosci. 24, 933–962 (2001).

    PubMed  Google Scholar 

  90. Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Schikorski, T. & Stevens, C. F. Morphological correlates of functionally defined synaptic vesicle populations. Nature Neurosci. 4, 391–395 (2001).

    CAS  PubMed  Google Scholar 

  92. Rutherford, L. C., Nelson, S. B. & Turrigiano, G. G. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21, 521–530 (1998). Evidence that BDNF might be involved in the maintenance of the balance of cortical excitation and inhibition by scaling the quantal amplitude of AMPA-mediated inputs.

    CAS  PubMed  Google Scholar 

  93. Narisawa-Saito, M., Carnahan, J., Araki, K., Yamaguchi, T. & Nawa, H. Brain-derived neurotrophic factor regulates the expression of AMPA receptor proteins in neocortical neurons. Neuroscience 88, 1009–1014 (1999).

    CAS  PubMed  Google Scholar 

  94. Narisawa-Saito, M. et al. Brain-derived neurotrophic factor regulates surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors by enhancing the N-ethylmaleimide-sensitive factor/GluR2 interaction in developing neocortical neurons. J. Biol. Chem. 277, 40901–40910 (2002).

    CAS  PubMed  Google Scholar 

  95. Leslie, K. R., Nelson, S. B. & Turrigiano, G. G. Postsynaptic depolarization scales quantal amplitude in cortical pyramidal neurons. J. Neurosci. 21, RC170 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mohrmann, R., Werner, M., Hatt, H. & Gottmann, K. Target-specific factors regulate the formation of glutamatergic transmitter release sites in cultured neocortical neurons. J. Neurosci. 19, 10004–10013 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rutherford, L. C., DeWan, A., Lauer, H. M. & Turrigiano, G. G. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J. Neurosci. 17, 4527–4535 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Takei, N. Brain-derived neurotrophic factor increases the stimulation-evoked release of glutamate and the levels of exocytosis-associated proteins in cultured cortical neurons from embryonic rats. J. Neurochem. 68, 370–375 (1997).

    CAS  PubMed  Google Scholar 

  99. Becher, A. et al. The synaptophysin–synaptobrevin complex: a hallmark of synaptic vesicle maturation. J. Neurosci. 19, 1922–1931 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Crowder, K. M. et al. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc. Natl Acad. Sci. USA 96, 15268–15273 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fukuda, M. et al. Role of the conserved WHXL motif in the C terminus of synaptotagmin in synaptic vesicle docking. Proc. Natl Acad. Sci. USA 97, 14715–14719 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu, T. & Bajjalieh, S. M. SV2 modulates the size of the readily releasable pool of secretory vesicles. Nature Cell Biol. 3, 691–698 (2001).

    CAS  PubMed  Google Scholar 

  103. Schoch, S. et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294, 1117–1122 (2001).

    CAS  PubMed  Google Scholar 

  104. Tarsa, L. & Goda, Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 99, 1012–1016 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Boulanger, L. & Poo, M. -M. Gating of BDNF-induced synaptic potentiation by cAMP. Science 284, 1982–1984 (1999).

    CAS  PubMed  Google Scholar 

  106. Pieribone, V. A. et al. Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375, 493–497 (1995).

    CAS  PubMed  Google Scholar 

  107. Chi, P., Greengard, P. & Ryan, T. A. Synapsin dispersion and reclustering during synaptic activity. Nature Neurosci. 4, 1187–1193 (2001).

    CAS  PubMed  Google Scholar 

  108. Chin, L. S., Ferreira, A., Kosik, K. S. & Greengard, P. Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc. Natl Acad. Sci. USA 92, 9230–9234 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995).

    CAS  PubMed  Google Scholar 

  110. Takei, Y. et al. Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system. J. Cell Biol. 131, 1789–1800 (1995).

    CAS  PubMed  Google Scholar 

  111. Jovanovic, J. N. et al. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I–actin interactions. Proc. Natl Acad. Sci. USA 93, 3679–3683 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Jovanovic, J. N., Czernik, A. J., Fiemberg, A. A., Greengard, P. & Sihra, T. S. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nature Neurosci. 3, 323–329 (2000). This study shows that synapsin phosphorylation mediates the effect of BDNF on the promotion of neurotransmitter release.

    CAS  PubMed  Google Scholar 

  113. Levine, E. S., Dreyfus, C. F., Black, I. B. & Plummer, M. R. Differential effects of NGF and BDNF on voltage-gated calcium currents in embryonic basal forebrain neurons. J. Neurosci. 15, 3084–3091 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Baldelli, P., Forni, P. E. & Carbone, E. BDNF, NT-3 and NGF induce distinct new Ca2+ channel synthesis in developing hippocampal neurons. Eur. J. Neurosci. 12, 4017–4032 (2000).

    CAS  PubMed  Google Scholar 

  115. Qian, J. & Noebels, J. L. Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron. J. Neurosci. 21, 3721–3728 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Minichiello, L. et al. Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron 21, 335–345 (1998).

    CAS  PubMed  Google Scholar 

  117. Atwal, J. K., Massie, B., Miller, F. D. & Kaplan, D. R. The TrkB–Shc site signals neuronal survival and local axon growth via MEK and PI3-kinase. Neuron 27, 265–277 (2000).

    CAS  PubMed  Google Scholar 

  118. Yang, F. et al. PI-3 kinase and IP3 are both necessary and sufficient to mediate NT3-induced synaptic potentiation. Nature Neurosci. 4, 19–28 (2001).

    CAS  PubMed  Google Scholar 

  119. Iida, N. et al. Requirement of Ras for the activation of mitogen-activated protein kinase by calcium influx, cAMP, and neurotrophin in hippocampal neurons. J. Neurosci. 21, 6459–6466 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Postigo, A. et al. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes Dev. 16, 633–645 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Blum, R., Kafitz, K. W. & Konnerth, A. Neurotrophin-evoked depolarization requires the sodium channel Nav1.9. Nature 419, 687–693 (2002).

    CAS  PubMed  Google Scholar 

  122. Kafitz, K. W., Lepier, A., Thoenen, H. & Konnerth, A. Saxitoxin-sensitivity of neurotrophin-induced rapid excitation and neurite growth. Pflugers Arch. 441, R125 (2001).

    Google Scholar 

  123. McAllister, K. A., Katz, L. C. & Lo, D. C. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 17, 1057–1064 (1996).

    CAS  PubMed  Google Scholar 

  124. Boulanger, L. & Poo, M. -M. Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nature Neurosci. 2, 346–351 (1999).

    CAS  PubMed  Google Scholar 

  125. Cohen-Cory, S. BDNF modulates, but does not mediate, activity-dependent branching and remodeling of optic axon arbors in vivo. J. Neurosci. 19, 9996–10003 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Gillespie, D. C., Crair, M. C. & Stryker, M. P. Neurotrophin-4/5 alters responses and blocks the effects of monocular deprivation in cat visual cortex during critical period. J. Neurosci. 20, 9174–9186 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    CAS  PubMed  Google Scholar 

  128. Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl Acad. Sci. USA 99, 9037–9042 (2002). These two in vivo studies (references 127 and 128) show that synaptogenesis occurs in the absence of spontaneous and evoked activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Stellwagen, D. & Shatz, C. J. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33, 357–367 (2002).

    CAS  PubMed  Google Scholar 

  130. Goldberg, J. L. et al. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33, 689–702 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. E. Rubio, F. de Pablo and E. J. de la Rosa for comments on the manuscript. C.V.-A. is an investigator of the Programa Ramón y Cajal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Vicario-Abejón.

Related links

Related links

DATABASES

LocusLink

BDNF

GABAA receptor subunit β2

GABAA receptor subunit β3

GluR2

MAPK

Nav1.9

NGF

NR2A

NR2B

NT3

NT4

P/Q-type calcium channels

p75

PI3K

Shc

SNAP25

SV2

synapsin 1

synapsin 2

synaptobrevin

synaptophysin

synaptotagmin

syntaxin

TrkA

TrkB

TrkC

FURTHER INFORMATION

Encyclopedia of Life Sciences

calcium and neurotransmitter release

chemical synapses

neural activity and the development of brain circuits

synaptic vesicle traffic

trophic support

Glossary

AUTOCRINE

Describes an agent that acts on the cell that produced it.

PARACRINE

Describes a mechanism of signalling between cells that relies on the diffusion of signalling molecules through the intercellular spaces.

OCULAR DOMINANCE COLUMN

One of a series of interdigitating bundles of axonal fibres in the visual cortex, containing afferents that represent one or other of the eyes.

GREEN FLUORESCENT PROTEIN

(GFP). A fluorescent protein that was originally isolated from the jellyfish Aequorea victoria. It can be genetically conjugated with proteins to mark them. The most widely used mutant, enhanced GFP, is excited at 488 nm and has an emission maximum at 510 nm.

PARALLEL FIBRES

Branches of the ascending axons of cerebellar granule cells. In the molecular layer of the cerebellar cortex, they run perpendicular to the planar Purkinje cell dendrites, with which they form so-called en passant synapses.

PURKINJE CELLS

Inhibitory neurons in the cerebellum that uses GABA as its neurotransmitter. Their cell bodies are situated beneath the molecular layer, and their dendrites branch extensively in this layer. Their axons project into the underlying white matter, and they provide the only output from the cerebellar cortex.

DOCKED VESICLES

The pool of synaptic vesicles that is available for rapid fusion with the presynaptic membrane in response to the arrival of a nerve impulse. These vesicles are docked to the membrane and a proportion of them are biochemically primed for release.

RESERVE POOL

A population of synaptic vesicles distal to the active zone that is recruited during periods of high-frequency stimulation.

ACTIVE ZONE

A portion of the presynaptic membrane that faces the postsynaptic density across the synaptic cleft. It constitutes the site of synaptic vesicle clustering, docking and transmitter release.

MINIATURE EXCITATORY POSTSYNAPTIC CURRENTS

Excitatory synaptic currents observed in the absence of presynaptic action potentials. They are thought to correspond to the discharge of single vesicles.

PAIRED-PULSE FACILITATION

When two stimuli are delivered to an axon in quick succession, the response elicited by the second stimulus is larger than that evoked by the first. This phenomenon is termed paired-pulse facilitation, and it is believed to depend on residual calcium that enters the presynaptic terminal.

POSTSYNAPTIC DENSITY

An electron-dense thickening underneath the postsynaptic membrane that contains receptors, structural proteins linked to the actin cytoskeleton and signalling elements, such as kinases and phosphatases.

N-ETHYLMALEIMIDE-SENSITIVE FUSION PROTEIN

An ATPase that is a key component of the membrane fusion machinery.

SNARE PROTEINS

A family of membrane-tethered coiled-coil proteins that regulate exocytotic reactions and target specificity in vesicular fusion processes. SNARE stands for 'soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor'.

ADAPTOR PROTEIN

A protein that contributes to cellular function by recruiting other proteins to a complex. Such molecules often contain several protein–protein interaction domains.

TETRODOTOXIN

A neurotoxin derived from the Fugu, or puffer fish, that specifically and reversibly blocks voltage-gated sodium channels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicario-Abejón, C., Owens, D., McKay, R. et al. Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci 3, 965–974 (2002). https://doi.org/10.1038/nrn988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn988

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing