Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macular degeneration: recent advances and therapeutic opportunities

Key Points

  • The macula is the central retinal region specialized for high acuity vision.

  • The retina has the highest oxygen consumption of any tissue in the body and together with the underlying retinal pigment epithelium (RPE) lives a metabolically precarious existence.

  • The retina is the only region of the human nervous system that can be observed directly. Two new, non-invasive imaging technologies, optical coherence tomography (OCT) and confocal scanning laser ophthalmoscopy (cSLO), allow the clinician to view the retina with nearly cellular resolution.

  • Genes for all of the main early-onset types of macular degeneration have been identified, and they reveal a role for the following structures or processes in macular disease: anion flux in the RPE; retinoid cycling and the production of a phototoxic retinoid-derived side product (A2E); the sub-RPE extracellular matrix; pro-angiogenic signalling; and long-chain fatty acid synthesis.

  • Animal models implicate oxidative, and in particular photo-oxidative, damage and immune system defects in the pathogenesis of macular degeneration.

  • Sub-RPE deposits are associated with age-related macular degeneration (AMD). The protein composition of these deposits and the results of experiments using knockout mice implicate the immune response in the pathogenesis of AMD.

  • Three loci with large effects on AMD risk have been identified. Two of these loci code for regulators of the complement cascade (complement factors B and H), directly implicating misregulation of the complement cascade in AMD.

  • Current therapies for AMD focus on blocking the growth of new blood vessels from the choroid into the retina (choroidal neovascularization). A major challenge for the future will be to develop therapies that target earlier stages in the progression of macular disease.

Abstract

The central retina mediates high acuity vision, and its progressive dysfunction due to macular degeneration is the leading cause of visual disability among adults in industrialized societies. Here, we summarize recent progress in understanding the pathophysiology of macular degeneration and the implications of this new knowledge for treatment and prevention. The past decade has witnessed remarkable advances in this field, including the development of new, non-invasive retinal imaging technologies, the development of animal models for macular disease, and the isolation of many of the genes responsible for both early- and late-onset macular diseases. These advances have set the stage for the development of effective mechanism-based therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of the human eye and retina.
Figure 2: The central retina as seen through the ophthalmoscope.
Figure 3: The retinoid cycle and A2E.
Figure 4: The retinal pigment epithelium, Bruch's membrane and the choroid.
Figure 5: Location and composition of drusen.
Figure 6: The alternative complement pathway and the roles of complement factors B and H.

Similar content being viewed by others

References

  1. Warburg, O. Uber die klassifizierung tierischer gewebe nach ihrem stoffwechsel. Biochem. Z. 184, 484–488 (1928) (in German).

    Google Scholar 

  2. Linsenmeier, R. A. Effects of light and darkness on oxygen distribution and consumption in the cat retina. J. Gen. Physiol. 88, 521–542 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Marmor, M. F. & Wolfensberger, T. J. The Retinal Pigment Epithelium (Oxford Univ. Press, Oxford, 1998). The classic reference work for RPE biology.

    Google Scholar 

  4. Marquardt, A. et al. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best's disease). Hum. Mol. Genet. 7, 1517–1525 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Petrukhin, K. et al. Identification of the gene responsible for Best macular dystrophy. Nature Genet. 19, 241–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Sun, H., Tsunenari, T., Yau, K. W. & Nathans, J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc. Natl Acad. Sci. USA 99, 4008–4013 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marmorstein, A. D. et al. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc. Natl Acad. Sci. USA 97, 12758–12763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weber, B. H., Vogt, G., Pruett, R. C., Stohr, H. & Felbor, U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nature Genet. 8, 352–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Jacobson, S. G. et al. Night blindness in Sorsby's fundus dystrophy reversed by vitamin A. Nature Genet. 11, 27–32 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Stone, E. M. et al. A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nature Genet. 22, 199–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Klenotic, P. A., Munier, F. L., Marmorstein, L. Y. & Anand-Apte, B. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1). Implications for macular degenerations. J. Biol. Chem. 279, 30469–30473 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Qi, J. H. et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Med. 9, 407–415 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Judge, D. P. & Dietz, H. C. Marfan's syndrome. Lancet 366, 1965–1976 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Allikmets, R. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nature Genet. 17, 236–246 (1997).

    Article  Google Scholar 

  15. Illing, M., Molday, L. L. & Molday, R. S. The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J. Biol. Chem. 272, 10303–10310 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Sun, H. & Nathans, J. Stargardt's ABCR is localized to the disc membrane of retinal rod outer segments. Nature Genet. 17, 15–16 (1997).

    Article  PubMed  Google Scholar 

  17. Molday, L. L., Rabin, A. R. & Molday, R. S. ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nature Genet. 25, 257–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Sun, H., Molday, R. S. & Nathans, J. Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J. Biol. Chem. 274, 8269–8281 (1999). One of the initial descriptions of ABCR's role in the retinoid cycle and in the pathophysiology of Stargardt disease, based on experiments with purified and reconstituted ABCR in vitro.

    Article  CAS  PubMed  Google Scholar 

  19. Weng, J. et al. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice. Cell 98, 13–23 (1999). One of the initial descriptions of ABCR's role in the retinoid cycle and in the pathophysiology of Stargardt disease, based on experiments with Abcr−/− mice.

    Article  CAS  PubMed  Google Scholar 

  20. Fishman, G. A., Farbman, J. S. & Alexander, K. R. Delayed rod dark adaptation in patients with Stargardt's disease. Ophthalmology 98, 957–962 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Delori, F. C. et al. In vivo measurement of lipofuscin in Stargardt's disease — Fundus flavimaculatus. Invest. Ophthalmol. Vis. Sci. 36, 2327–2331 (1995).

    CAS  PubMed  Google Scholar 

  22. Mata, N. L., Weng, J. & Travis, G. H. Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc. Natl Acad. Sci. USA 97, 7154–7159 (2000). Demonstrates the accumulation of A2E in both a human Stargardt disease patient's eyes and in a mouse model of Stargardt disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mata, N. L. et al. Delayed dark-adaptation and lipofuscin accumulation in abcr+/− mice: implications for involvement of ABCR in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 42, 1685–1690 (2001).

    CAS  PubMed  Google Scholar 

  24. Parish, C. A., Hashimoto, M., Nakanishi, K., Dillon, J. & Sparrow, J. Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc. Natl Acad. Sci. USA 95, 14609–14613 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sparrow, J. R. et al. A2E, a byproduct of the visual cycle. Vision. Res. 43, 2983–2990 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Sparrow, J. R. et al. Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE. Invest. Ophthalmol. Vis. Sci. 43, 1222–1227 (2002). Demonstration of the cellular phototoxicity of A2E.

    PubMed  Google Scholar 

  27. Radu, R. A., Mata, N. L., Bagla, A. & Travis, G. H. Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt's macular degeneration. Proc. Natl Acad. Sci. USA 101, 5928–5933 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edwards, A. O., Donoso, L. A. & Ritter, R. A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Invest. Ophthalmol. Vis. Sci. 42, 2652–2663 (2001).

    CAS  PubMed  Google Scholar 

  29. Zhang, K. et al. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nature Genet. 27, 89–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Klein, R. in Age-Related Macular Degeneration (eds Berger, J. W., Fine, S. L. & Maguire, M. G.) 31–56 (Mosby, St. Louis, 1999). A highly readable summary of AMD epidemiology.

    Google Scholar 

  31. Maguire, M. G. in Age-Related Macular Degeneration (eds Berger, J. W., Fine, S. L. & Maguire, M. G.) 17–30 (Mosby, St. Louis, 1999).

    Google Scholar 

  32. Eisner, A., Fleming, S. A., Klein, M. L. & Mauldin, W. M. Sensitivities in older eyes with good acuity: eyes whose fellow eye has exudative AMD. Invest. Ophthalmol. Vis. Sci. 28, 1832–1837 (1987).

    CAS  PubMed  Google Scholar 

  33. Eisner, A., Stoumbos, V. D., Klein, M. L. & Fleming, S. A. Relations between fundus appearance and function. Eyes whose fellow eye has exudative age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 32, 8–20 (1991).

    CAS  PubMed  Google Scholar 

  34. Klein, R., Klein, B. E. & Linton, K. L. Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 99, 933–943 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Mitchell, P., Smith, W., Attebo, K. & Wang, J. J. Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology 102, 1450–1460 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Vingerling, J. R. et al. The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102, 205–210 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Seddon, J. M., Ajani, U. A. & Mitchell, B. D. Familial aggregation of age-related maculopathy. Am. J. Ophthalmol. 123, 199–206 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Thornton, J. et al. Smoking and age-related macular degeneration: a review of association. Eye 19, 935–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Heiba, I. M., Elston, R. C., Klein, B. E. & Klein, R. Sibling correlations and segregation analysis of age-related maculopathy: the Beaver Dam Eye Study. Genet. Epidemiol. 11, 51–67 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Meyers, S. M., Greene, T. & Gutman, F. A. A twin study of age-related macular degeneration. Am. J. Ophthalmol. 120, 757–766 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, β-carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch. Ophthalmol. 119, 1417–1436 (2001).

  42. Guymer, R. & Bird, A. C. in The Retinal Pigment Epithelium (eds Marmor, M. F. & Wolfensberger, T. J.) 693–705 (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  43. Marshall, J., Hussain, A. A., Starita, C., Moore, D. J. & Patmore, A. L. in The Retinal Pigment Epithelium (eds Marmor, M. F. & Wolfensberger, T. J.) 669–692 (Oxford Univ. Press, Oxford, 1998)

    Google Scholar 

  44. Zarbin, M. A. Current concepts in the pathogenesis of age-related macular degeneration. Arch. Ophthalmol. 122, 598–614 (2004).

    Article  PubMed  Google Scholar 

  45. Anderson, D. H., Mullins, R. F., Hageman, G. S. & Johnson, L. V. A role for local inflammation in the formation of drusen in the aging eye. Am. J. Ophthalmol. 134, 411–431 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Mullins, R. F., Russell, S. R., Anderson, D. H. & Hageman, G. S. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 14, 835–846 (2000). One of the first descriptions of inflammation-associated protein deposits in drusen.

    Article  CAS  PubMed  Google Scholar 

  47. Hageman, G. S. et al. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE–Bruch's membrane interface in aging and age-related macular degeneration. Prog. Retin. Eye Res. 20, 705–732 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Johnson, L. V., Leitner, W. P., Staples, M. K. & Anderson, D. H. Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp. Eye Res. 73, 887–896 (2001). Along with reference 46, this paper was one of the first descriptions of inflammation-associated protein deposits in drusen.

    Article  CAS  PubMed  Google Scholar 

  49. Johnson, L. V. et al. The Alzheimer's Aβ peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc. Natl Acad. Sci. USA 99, 11830–11835 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Crabb, J. W. et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc. Natl Acad. Sci. USA 99, 14682–14687 (2002). Describes the use of mass spectrometry to define the composition of microdissected drusen, revealing a wide variety of components.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nozaki, M. et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc. Natl Acad. Sci. USA 103, 2328–2333 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bressler, N. M., Bressler, S. B., West, S. K., Fine, S. L. & Taylor, H. R. The grading and prevalence of macular degeneration in Chesapeake Bay watermen. Arch. Ophthalmol. 107, 847–852 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Klein, R., Klein, B. E., Jensen, S. C. & Meuer, S. M. The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 104, 7–21 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Penfold, P. L., Killingsworth, M. C. & Sarks, S. H. Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch. Clin. Exp. Ophthalmol. 223, 69–76 (1985).

    Article  CAS  PubMed  Google Scholar 

  55. Penfold, P. L., Madigan, M. C., Gillies, M. C. & Provis, J. M. Immunological and aetiological aspects of macular degeneration. Prog. Retin. Eye Res. 20, 385–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Duvall-Young, J., MacDonald, M. K. & McKechnie, N. M. Fundus changes in (type II) mesangiocapillary glomerulonephritis simulating drusen: a histopathological report. Br. J. Ophthalmol. 73, 297–302 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duvall-Young, J., Short, C. D., Raines, M. F., Gokal, R. & Lawler, W. Fundus changes in mesangiocapillary glomerulonephritis type II: clinical and fluorescein angiographic findings. Br. J. Ophthalmol. 73, 900–906 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leys, A. et al. Subretinal neovascular membranes associated with chronic membranoproliferative glomerulonephritis type II. Graefes Arch. Clin. Exp. Ophthalmol. 228, 499–504 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Leys, A. et al. Fundus changes in membranoproliferative glomerulonephritis type II. A fluorescein angiographic study of 23 patients. Graefes Arch. Clin. Exp. Ophthalmol. 229, 406–410 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Mullins, R. F., Aptsiauri, N. & Hageman, G. S. Structure and composition of drusen associated with glomerulonephritis: implications for the role of complement activation in drusen biogenesis. Eye 15, 390–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Zipfel, P. F., Heinen, S., Jozsi, M. & Skerka, C. Complement and diseases: defective alternative pathway control results in kidney and eye diseases. Mol. Immunol. 43, 97–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Roitt, I. M. Essential Immunology (Blackwell Scientific, Oxford, 1994).

    Google Scholar 

  63. Holers, V. M. in Clinical Immunology: Principles and Practice (eds Rich, R. R., et al.) 363–391 (Mosby, St. Louis, 1996).

    Google Scholar 

  64. Dragon-Durey, M. A. et al. Heterozygous and homozygous factor H deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. J. Am. Soc. Nephrol. 15, 787–795 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Delori, F. C., Goger, D. G. & Dorey, C. K. Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest. Ophthalmol. Vis. Sci. 42, 1855–1866 (2001).

    CAS  PubMed  Google Scholar 

  66. von Ruckmann, A., Fitzke, F. W. & Bird, A. C. Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest. Ophthalmol. Vis. Sci. 38, 478–486 (1997).

    CAS  PubMed  Google Scholar 

  67. Hopkins, J., Walsh, A. & Chakravarthy, U. Fundus autofluorescence in age-related macular degeneration: an epiphenomenon? Invest. Ophthalmol. Vis. Sci. 47, 2269–2271 (2006).

    Article  PubMed  Google Scholar 

  68. Allikmets, R. Molecular genetics of age-related macular degeneration: current status. Eur. J. Ophthalmol. 9, 255–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Allikmets, R. Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am. J. Hum. Genet. 67, 487–491 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shroyer, N. F., Lewis, R. A., Yatsenko, A. N., Wensel, T. G. & Lupski, J. R. Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration. Hum. Mol. Genet. 10, 2671–2678 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Stone, E. M. et al. Missense variations in the fibulin 5 gene and age-related macular degeneration. N. Engl. J. Med. 351, 346–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Fisher, S. A. et al. Meta-analysis of genome scans of age-related macular degeneration. Hum. Mol. Genet. 14, 2257–2264 (2005). Combines the data from multiple whole genome linkage scans to reveal a set of promising candidate regions for AMD susceptibility genes.

    Article  CAS  PubMed  Google Scholar 

  73. Edwards, A. O. et al. Complement factor H polymorphism and age-related macular degeneration. Science 308, 421–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Hageman, G. S. et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl Acad. Sci. USA 102, 7227–7232 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Haines, J. L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005). References 73–76 are four initial reports of linkage between AMD susceptibility and sequence variation in the CFH gene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Herbert, A. P., Uhrin, D., Lyon, M., Pangburn, M. K. & Barlow, P. N. Disease-associated sequence variations congregate in a polyanion recognition patch on human factor H revealed in three-dimensional structure. J. Biol. Chem. 281, 16512–16520 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Saunders, R. E., Goodship, T. H., Zipfel, P. F. & Perkins, S. J. An interactive web database of factor H-associated hemolytic uremic syndrome mutations: insights into the structural consequences of disease-associated mutations. Hum. Mutat. 27, 21–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Li, M. et al. CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nature Genet. 38, 1049–1054 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Jakobsdottir, J. et al. Susceptibility genes for age-related maculopathy on chromosome 10q26. Am. J. Hum. Genet. 77, 389–407 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rivera, A. et al. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum. Mol. Genet. 14, 3227–3236 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Schmidt, S. et al. Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration. Am. J. Hum. Genet. 78, 852–864 (2006). Along with reference 81, this work describes a strong association between a second locus, unlinked to CFH , and AMD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gold, B. et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nature Genet. 38, 458–462 (2006). The first description of AMD susceptibility associated with BF gene variation.

    Article  CAS  PubMed  Google Scholar 

  84. Ishibashi, T., Miller, H., Orr, G., Sorgente, N. & Ryan, S. J. Morphologic observations on experimental subretinal neovascularization in the monkey. Invest. Ophthalmol. Vis. Sci. 28, 1116–1130 (1987).

    CAS  PubMed  Google Scholar 

  85. Blaauwgeers, H. G. et al. Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am. J. Pathol. 155, 421–428 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dawson, D. W. et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245–248 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Oshima, Y. et al. Increased expression of VEGF in retinal pigmented epithelial cells is not sufficient to cause choroidal neovascularization. J. Cell Physiol. 201, 393–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Bora, P. S. et al. Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization. J. Immunol. 174, 491–497 (2005). A convincing demonstration that there is an immunological component to experimental choroidal neovascularization, even if it is induced by a laser burn.

    Article  CAS  PubMed  Google Scholar 

  89. Espinosa-Heidmann, D. G., Sall, J., Hernandez, E. P. & Cousins, S. W. Basal laminar deposit formation in APO B100 transgenic mice: complex interactions between dietary fat, blue light, and vitamin E. Invest. Ophthalmol. Vis. Sci. 45, 260–266 (2004).

    Article  PubMed  Google Scholar 

  90. Espinosa-Heidmann, D. G. et al. Cigarette smoke-related oxidants and the development of sub-RPE deposits in an experimental animal model of dry AMD. Invest. Ophthalmol. Vis. Sci. 47, 729–737 (2006).

    Article  PubMed  Google Scholar 

  91. Hahn, P. et al. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc. Natl Acad. Sci. USA 101, 13850–13855 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Malek, G. et al. Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc. Natl Acad. Sci. USA 102, 11900–11905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Imamura, Y. et al. Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc. Natl Acad. Sci. USA 103, 11282–11287 (2006). Describes genetic evidence that oxidative and photo-oxidative damage induce drusen formation in a mouse model of AMD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ambati, J. et al. An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nature Med. 9, 1390–1397 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Jansen, J. H., Hogasen, K. & Grondahl, A. M. Porcine membranoproliferative glomerulonephritis type II: an autosomal recessive deficiency of factor H. Vet. Rec. 137, 240–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Pickering, M. C. et al. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nature Genet. 31, 424–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Weber, B. H. et al. A mouse model for Sorsby fundus dystrophy. Invest. Ophthalmol. Vis. Sci. 43, 2732–2740 (2002).

    PubMed  Google Scholar 

  98. Karan, G. et al. Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc. Natl Acad. Sci. USA 102, 4164–4169 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Radu, R. A. et al. Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt's macular degeneration. Proc. Natl Acad. Sci. USA 100, 4742–4747 (2003). Presents a mouse model of Stargardt disease in which pharmacological inhibition of RPE65 blocks A2E accumulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maiti, P. et al. Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochemistry 45, 852–860 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Umeda, S. et al. Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis). FASEB J. 19, 1683–1685 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Gass, J. D. Photocoagulation of macular lesions. Trans. Am. Acad. Ophthalmol. Otolaryngol. 75, 580–608 (1971).

    CAS  PubMed  Google Scholar 

  103. Berger, J. W. & Fine, S. L. in Age-Related Macular Degeneration (eds Berger, J. W., Fine, S. L. & Maguire, M. G.) 31–56 (Mosby, St. Louis, 1999).

    Google Scholar 

  104. Michels, S. et al. Comparison of early retreatment with the standard regimen in verteporfin therapy of neovascular age-related macular degeneration. Ophthalmology 112, 2070–2075 (2005).

    Article  PubMed  Google Scholar 

  105. Eyetech Study Group. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology 110, 979–986 (2003).

  106. Avery, R. L. et al. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113, 363–372 (2006).

    Article  PubMed  Google Scholar 

  107. Rosenfeld, P. J., Heier, J. S., Hantsbarger, G. & Shams, N. Tolerability and efficacy of multiple escalating doses of ranibizumab (Lucentis) for neovascular age-related macular degeneration. Ophthalmology 113, 632 (2006).

    Article  Google Scholar 

  108. Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Gass, J. D. Drusen and disciform macular detachment and degeneration. Arch. Ophthalmol. 90, 206–217 (1973).

    Article  CAS  PubMed  Google Scholar 

  110. Cleasby, G. W., Nakanishi, A. S. & Norris, J. L. Prophylactic photocoagulation of the fellow eye in exudative senile maculopathy. A preliminary report. Mod. Probl. Ophthalmol. 20, 141–147 (1979).

    CAS  PubMed  Google Scholar 

  111. Wetzig, P. C. Treatment of drusen-related aging macular degeneration by photocoagulation. Trans. Am. Ophthalmol. Soc. 86, 276–290 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wetzig, P. C. Photocoagulation of drusen-related macular degeneration: a long-term outcome. Trans. Am. Ophthalmol. Soc. 92, 299–303 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Duvall, J. & Tso, M. O. Cellular mechanisms of resolution of drusen after laser coagulation. An experimental study. Arch. Ophthalmol. 103, 694–703 (1985).

    Article  CAS  PubMed  Google Scholar 

  114. Hsu, J., Maguire, M. G. & Fine, S. L. Laser prophylaxis for age-related macular degeneration. Can. J. Ophthalmol. 40, 320–331 (2005).

    Article  PubMed  Google Scholar 

  115. Monsonego, A. & Weiner, H. L. Immunotherapeutic approaches to Alzheimer's disease. Science 302, 834–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Wilcock, D. M. et al. Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J. Neurosci. 24, 6144–6151 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ornish, D. et al. Intensive lifestyle changes for reversal of coronary heart disease. J. Am. Med. Assoc. 280, 2001–2007 (1998).

    Article  CAS  Google Scholar 

  118. Nissen, S. E. et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N. Engl. J. Med. 352, 29–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Wong, J., Patel, R. A. & Kowey, P. R. The clinical use of angiotensin-converting enzyme inhibitors. Prog. Cardiovasc. Dis. 47, 116–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Spaltenstein, A., Kazmierski, W. M., Miller, J. F. & Samano, V. Discovery of next generation inhibitors of HIV protease. Curr. Top. Med. Chem. 5, 1589–1607 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Radu, R. A. et al. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest. Ophthalmol. Vis. Sci. 46, 4393–4401 (2005).

    Article  PubMed  Google Scholar 

  122. de Kruif, M. D., van Gorp, E. C., Keller, T. T., Ossewaarde, J. M. & ten Cate, H. Chlamydia pneumoniae infections in mouse models: relevance for atherosclerosis research. Cardiovasc. Res. 65, 317–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Campbell, L. A. & Kuo, C. C. Chlamydia pneumoniae — an infectious risk factor for atherosclerosis? Nature Rev. Microbiol. 2, 23–32 (2004).

    Article  CAS  Google Scholar 

  124. Kalayoglu, M. V., Galvan, C., Mahdi, O. S., Byrne, G. I. & Mansour, S. Serological association between Chlamydia pneumoniae infection and age-related macular degeneration. Arch. Ophthalmol. 121, 478–482 (2003).

    Article  PubMed  Google Scholar 

  125. Kalayoglu, M. V. et al. Identification of Chlamydia pneumoniae within human choroidal neovascular membranes secondary to age-related macular degeneration. Graefes. Arch. Clin. Exp. Ophthalmol. 243, 1080–1090 (2005).

    Article  PubMed  Google Scholar 

  126. Pieramici, D. J. & Bressler, S. B. in Age-Related Macular Degeneration (eds Berger, J. W., Fine, S. L. & Maguire, M. G.) 219–236 (Mosby, St. Louis, 1999).

    Google Scholar 

  127. Yannuzzi, L. A. et al. Ophthalmic fundus imaging: today and beyond. Am. J. Ophthalmol. 137, 511–524 (2004).

    Article  PubMed  Google Scholar 

  128. Sharp, P. F., Manivannan, A., Xu, H. & Forrester, J. V. The scanning laser ophthalmoscope — a review of its role in bioscience and medicine. Phys. Med. Biol. 49, 1085–1096 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Thomas, D. & Duguid, G. Optical coherence tomography — a review of the principles and contemporary uses in retinal investigation. Eye 18, 561–570 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Webb, R. H., Hughes, G. W. & Delori, F. C. Confocal scanning laser ophthalmoscope. Appl. Opt. 26, 1492–1499 (1987). One of the original descriptions of the cSLO technology.

    Article  CAS  PubMed  Google Scholar 

  131. Bindewald, A. et al. Classification of fundus autofluorescence patterns in early age-related macular disease. Invest. Ophthalmol. Vis. Sci. 46, 3309–3314 (2005).

    Article  PubMed  Google Scholar 

  132. Zhang, Y. & Roorda, A. Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope. J. Biomed. Opt. 11, 14002 (2006).

    Article  Google Scholar 

  133. Hossain, P. et al. In vivo cell tracking by scanning laser ophthalmoscopy: quantification of leukocyte kinetics. Invest. Ophthalmol. Vis. Sci. 39, 1879–1887 (1998).

    CAS  PubMed  Google Scholar 

  134. Martin, J. A. & Roorda, A. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. Ophthalmology 112, 2219–2224 (2005).

    Article  PubMed  Google Scholar 

  135. Hammer, D. X. et al. Compact scanning laser ophthalmoscope with high-speed retinal tracker. Appl. Opt. 42, 4621–4632 (2003).

    Article  PubMed  Google Scholar 

  136. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991). The invention of OCT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schmidt-Erfurth, U. et al. Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).

    Article  PubMed  Google Scholar 

  138. Cucu, R. G., Podoleanu, A. G., Rogers, J. A., Pedro, J. & Rosen, R. B. Combined confocal/en face T-scan-based ultrahigh-resolution optical coherence tomography in vivo retinal imaging. Opt. Lett. 31, 1684–1686 (2006).

    Article  PubMed  Google Scholar 

  139. Fernandez, E. J. et al. Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator. Vision. Res. 45, 3432–3444 (2005). Along with reference 138, this paper provides a recent description of state-of-the-art ultra-high- resolution OCT.

    Article  PubMed  Google Scholar 

  140. Podoleanu, A. G. et al. Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy. J. Biomed. Opt. 9, 86–93 (2004).

    Article  PubMed  Google Scholar 

  141. Osterberg, G. Topography of the layer of rods and cones in the human retina. Acta Ophthalmol. Suppl. 6, 1–101 (1935).

    Google Scholar 

  142. Sparrow, J. R., Nakanishi, K. & Parish, C. A. The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest. Ophthalmol. Vis. Sci. 41, 1981–1989 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the following colleagues for permission to reproduce images: R. Cucu (Box 1c); G. Hageman (Fig. 5a–c); F. Holz (Box 1b); L. Johnson (Fig. 5d); R. Lewis (Fig. 2a,c); J. Sparrow (Fig. 3b); E. Stone (Fig. 2b; Box 1a); and H. Sun (Fig. 4a). The authors are supported by the National Institutes of Health (National Eye Institute) and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Nathans.

Ethics declarations

Competing interests

Jeremy Nathans is a paid consultant for the Ophthalmology Group at the Novartis Research Institute.

Related links

Related links

DATABASES

OMIM

Sorsby's fundus dystrophy

Marfan syndrome

malattia leventinese

vitelliform macular dystrophy

FURTHER INFORMATION

GenBank database

Glossary

Metalloproteinase

A proteinase that has a metal ion at its active site.

Druse/drusen

Discrete sub-retinal pigment epithelium deposits composed of a complex mixture of lipid and protein. From German, meaning 'rock' or 'geode'.

Fundus

The posterior region of the eye, including the retina, retinal pigment epithelium and choroid.

Hypercholesterolemia

Elevated serum cholesterol levels.

Confocal scanning laser ophthalmoscopy

(cSLO). A non-invasive technique for fundus examination that produces en face images of the retina at high spatial resolution.

Logarithm of the odds (LOD) score

The standard statistical test for genetic linkage, whereby the likelihood of bone fide linkage is compared to the probability that the data reflect a chance association.

Single nucleotide polymorphism

(SNP). One of the most common genetic variations in humans. It occurs when a single nucleotide (for example, thymine) replaces one of the other three nucleotides (adenine, guanine or cytosine).

Haplotype

Clustered DNA sequence variants that were present together on a common ancestral chromosome. Because of their close proximity they are generally inherited together and serve to define the ancestral chromosomal region.

Major histocompatibility complex

(MHC). There are two classes of MHC molecules. MHC class I molecules are found on the surface of most cells and present proteins that are generated in the cytosol to T lymphocytes. MHC class II molecules are expressed only on the surface of activated antigen-presenting cells, and they present peptides that have been degraded in cellular vesicles to T cells.

Hyperlipidemia

Elevated serum lipid levels.

Optical coherence tomography

(OCT). A non-invasive technique for fundus examination that produces cross-sectional images of the retina, retinal pigment epithelium and choroid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rattner, A., Nathans, J. Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7, 860–872 (2006). https://doi.org/10.1038/nrn2007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing