Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Retrograde transport from endosomes to the trans-Golgi network

Key Points

  • Some intracellular transmembrane proteins, such as acid-hydrolase receptors, processing peptidases and SNAREs, undergo retrograde transport from endosomes to the trans-Golgi network (TGN) as part of their normal trafficking. This retrograde-transport pathway is exploited by a subset of bacterial and plant protein toxins to enable them to reach the endoplasmic reticulum and eventually the cytosol.

  • Recent studies have begun to unravel the molecular machinery that is involved in this retrograde transport. Acid-hydrolase receptors such as Saccharomyces cerevisiae vacuolar protein sorting-10 (Vps10) protein and the mammalian mannose 6-phosphate receptors (MPRs) are selected for retrograde transport by a five-subunit complex named 'retromer'. In mammalian cells, this complex is mainly associated with tubules that emanate from vacuolar, early–late endosomal intermediates.

  • Other components of the retrograde-transport machinery for the mammalian MPRs are the clathrin-associated, heterotetrameric AP1 (adaptor protein-1) complex, the clathrin-associated monomeric adaptor epsinR (epsin-related) and PACS1 (phosphofurin acidic-cluster-sorting-1), which are also associated with early endosomes and derived tubules. Furthermore, the small GTPase Rab9 and its effector TIP47 (tail-interacting protein of 47 kDa) mediate the retrograde transport of MPRs from late endosomes.

  • Although MPRs seem to be capable of being transported to the TGN from both early and late endosomal compartments, protein toxins undergo retrograde transport exclusively from early endosomes. Not surprisingly then, protein toxins and MPRs share some components of the retrograde-transport machinery that is associated with early endosomal compartments.

  • The location of molecular devices that are involved in the retrograde transport of MPRs and protein toxins highlights the existence of an extensive 'tubular endosomal network' (TEN) that both sorts and recycles cargoes to various destinations, including different domains of the plasma membrane, the limiting membrane of lysosomes and lysosome-related organelles, and specialized storage vesicles, in addition to the TGN.

  • The TEN probably gives rise to retrograde-transport carriers that dock at and fuse with the TGN by a process that relies on various small GTPases of the Arl (ADP-ribosylation factor-like) and Rab families, tethering factors and SNARE complexes.

  • This diversity of compartments and molecular devices underscores the existence of multiple pathways for retrograde transport from endosomes to the TGN.

Abstract

A subset of intracellular transmembrane proteins such as acid-hydrolase receptors, processing peptidases and SNAREs, as well as extracellular protein toxins such as Shiga toxin and ricin, undergoes 'retrograde' transport from endosomes to the trans-Golgi network. Here, we discuss recent studies that have begun to unravel the molecular machinery that is involved in this process. We also propose a central role for a 'tubular endosomal network' in sorting to recycling pathways that lead not only to the trans-Golgi network but also to different plasma-membrane domains and to specialized storage vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Components of the molecular machinery that mediates retrograde transport from endosomes to the trans-Golgi network.
Figure 2: Ultrastructural localization of various sorting devices to tubular endosomes.
Figure 3: A schematic representation of the 'tubular endosomal network'.

Similar content being viewed by others

References

  1. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Griffiths, G. & Simons, K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234, 438–443 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez-Boulan, E. & Musch, A. Protein sorting in the Golgi complex: shifting paradigms. Biochim. Biophys. Acta 1744, 455–464 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Rohn, W. M., Rouille, Y., Waguri, S. & Hoflack, B. Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system. J. Cell Sci. 113, 2093–2101 (2000).

    CAS  PubMed  Google Scholar 

  5. Snider, M. D. & Rogers, O. C. Intracellular movement of cell surface receptors after endocytosis: resialylation of asialo-transferrin receptor in human erythroleukemia cells. J. Cell Biol. 100, 826–834 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Bowers, K. & Stevens, T. H. Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1744, 438–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nature Rev. Mol. Cell Biol. 4, 202–212 (2003). References 6 and 7 are comprehensive reviews on the transport of acid hydrolases from the late Golgi to the vacuole in S. cerevisiae and from the TGN to lysosomes in mammalian cells, respectively.

    Article  CAS  Google Scholar 

  8. Molloy, S. S., Anderson, E. D., Jean, F. & Thomas, G. Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol. 9, 28–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Voos, W. & Stevens, T. H. Retrieval of resident late-Golgi membrane proteins from the prevacuolar compartment of Saccharomyces cerevisiae is dependent on the function of Grd19p. J. Cell Biol. 140, 577–590 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varlamov, O. & Fricker, L. D. Intracellular trafficking of metallocarboxypeptidase D in AtT-20 cells: localization to the trans-Golgi network and recycling from the cell surface. J. Cell Sci. 111, 877–885 (1998).

    CAS  PubMed  Google Scholar 

  11. Valdivia, R. H., Baggott, D., Chuang, J. S. & Schekman, R. W. The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins. Dev. Cell 2, 283–294 (2002). Together with references 35 and 36, this article shows a requirement for the clathrin adaptor AP1 in the sorting of some proteins from endosomes to the TGN.

    Article  CAS  PubMed  Google Scholar 

  12. Lewis, M. J., Nichols, B. J., Prescianotto-Baschong, C., Riezman, H. & Pelham, H. R. Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol. Biol. Cell 11, 23–38 (2000). Together with reference 32, this paper describes the molecular machinery that is involved in the recycling of the SNAREs Snc1 and Pep12 from endosomes to the late Golgi complex in S. cerevisiae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hong, W. SNAREs and traffic. Biochim. Biophys. Acta 1744, 493–517 (2005).

    PubMed  Google Scholar 

  14. Tai, G. et al. Participation of the syntaxin 5/Ykt6/GS28/GS15 SNARE complex in transport from the early/recycling endosome to the trans-Golgi network. Mol. Biol. Cell 15, 4011–4022 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mallard, F. et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol. 156, 653–664 (2002). References 14 and 15 describe two SNARE complexes that are involved in the fusion of endosome-derived retrograde carriers with the TGN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sandvig, K. & van Deurs, B. Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther. 12, 865–872 (2005). This article reviews how exotoxins exploit the cell's trafficking machinery to gain access to the cell.

    Article  CAS  PubMed  Google Scholar 

  17. Seaman, M. N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005). A comprehensive review on the structure and function of the S. cerevisiae and mammalian retromer complexes.

    Article  CAS  PubMed  Google Scholar 

  18. Haft, C. R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105–4116 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kerr, M. C. et al. A novel mammalian retromer component, Vps26B. Traffic 6, 991–1001 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Carlton, J., Bujny, M., Rutherford, A. & Cullen, P. Sorting nexins — unifying trends and new perspectives. Traffic 6, 75–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Shi, H., Rojas, R., Bonifacino, J. S. & Hurley, J. H. Human Vps26 has an arrestin fold and is integrated into the retromer complex through its C-terminal domain. Nature Struct. Mol. Biol. 13, 540–548 (2006). X-ray crystallography reveals an unexpected structural homology of the VPS26 subunit of mammalian retromer to arrestins.

    Article  CAS  Google Scholar 

  22. Collins, B. M., Skinner, C. F., Watson, P. J., Seaman, M. N. & Owen, D. J. Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nature Struct. Mol. Biol. 12, 594–602 (2005).

    Article  CAS  Google Scholar 

  23. Wang, D. et al. Crystal structure of human vacuolar protein sorting protein 29 reveals a phosphodiesterase/nuclease-like fold and two protein–protein interaction sites. J. Biol. Chem. 280, 22962–22967 (2005). References 22 and 23 report that the VPS29 subunit of mammalian retromer has structural homology to divalent-metal-containing phosphoesterases.

    Article  CAS  PubMed  Google Scholar 

  24. Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seaman, M. N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004). References 24–26 report that the mammalian retromer complex mediates the sorting of MPRs from endosomes to the TGN.

    Article  CAS  PubMed  Google Scholar 

  27. Raposo, G., Tenza, D., Murphy, D. M., Berson, J. F. & Marks, M. S. Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J. Cell Biol. 152, 809–824 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peden, A. A. et al. Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins. J. Cell Biol. 164, 1065–1076 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Small, S. A. et al. Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann. Neurol. 58, 909–919 (2005). Decreased levels of retromer are linked to the development of Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  30. Haass, C. Take five — BACE and the γ-secretase quartet conduct Alzheimer's amyloid β-peptide generation. EMBO J. 23, 483–488 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halpern, S. The gene hunters. The New Yorker, 84–93 (12 December 2005).

  32. Hettema, E. H., Lewis, M. J., Black, M. W. & Pelham, H. R. Retromer and the sorting nexins Snx4/41/42 mediate distinct retrieval pathways from yeast endosomes. EMBO J. 22, 548–557 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wan, L. et al. PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localization. Cell 94, 205–216 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Crump, C. M. et al. PACS-1 binding to adaptors is required for acidic cluster motif-mediated protein traffic. EMBO J. 20, 2191–2201 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meyer, C. et al. m1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19, 2193–2203 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Medigeshi, G. R. & Schu, P. Characterization of the in vitro retrograde transport of MPR46. Traffic 4, 802–811 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Saint-Pol, A. et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev. Cell 6, 525–538 (2004). Clathrin and epsinR are implicated in the retrograde transport of Shiga toxin, TGN38, TGN46 and MPRs from endosomes to the TGN.

    Article  CAS  PubMed  Google Scholar 

  38. Lombardi, D. et al. Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J. 12, 677–682 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Diaz, E. & Pfeffer, S. R. TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93, 433–443 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Barbero, P., Bittova, L. & Pfeffer, S. R. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J. Cell Biol. 156, 511–518 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riederer, M. A., Soldati, T., Shapiro, A. D., Lin, J. & Pfeffer, S. R. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J. Cell Biol. 125, 573–582 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Carroll, K. S. et al. Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science 292, 1373–1376 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Hickenbottom, S. J., Kimmel, A. R., Londos, C. & Hurley, J. H. Structure of a lipid droplet protein; the PAT family member TIP47. Structure 12, 1199–1207 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Wolins, N. E., Rubin, B. & Brasaemle, D. L. TIP47 associates with lipid droplets. J. Biol. Chem. 276, 5101–5108 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Mallard, F. et al. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of Shiga toxin B-fragment transport. J. Cell Biol. 143, 973–990 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iversen, T. G. et al. Endosome to Golgi transport of ricin is independent of clathrin and of the Rab9- and Rab11-GTPases. Mol. Biol. Cell 12, 2099–2107 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lauvrak, S. U., Torgersen, M. L. & Sandvig, K. Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. J. Cell Sci. 117, 2321–2331 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Grimmer, S., Iversen, T. G., van Deurs, B. & Sandvig, K. Endosome to Golgi transport of ricin is regulated by cholesterol. Mol. Biol. Cell 11, 4205–4216 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Falguieres, T. et al. Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol. Biol. Cell 12, 2453–2468 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schweizer, A., Kornfeld, S. & Rohrer, J. Cysteine34 of the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor is reversibly palmitoylated and required for normal trafficking and lysosomal enzyme sorting. J. Cell Biol. 132, 577–584 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Sztul, E. & Lupashin, V. Role of tethering factors in secretory membrane traffic. Am. J. Physiol. Cell Physiol. 290, C11–C26 (2006). This review, as well as references 52–54 and 56–60, describe the properties of proteins that mediate the tethering of endosome-derived carriers to the TGN.

    Article  CAS  PubMed  Google Scholar 

  52. Conibear, E. & Stevens, T. H. Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol. Biol. Cell 11, 305–323 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Siniossoglou, S. & Pelham, H. R. An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J. 20, 5991–5998 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Conibear, E., Cleck, J. N. & Stevens, T. H. Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p. Mol. Biol. Cell 14, 1610–1623 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo, Z. & Gallwitz, D. Biochemical and genetic evidence for the involvement of yeast Ypt6-GTPase in protein retrieval to different Golgi compartments. J. Biol. Chem. 278, 791–799 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Ungar, D., Oka, T., Krieger, M. & Hughson, F. M. Retrograde transport on the COG railway. Trends Cell Biol. 16, 113–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Cai, H., Zhang, Y., Pypaert, M., Walker, L. & Ferro-Novick, S. Mutants in trs120 disrupt traffic from the early endosome to the late Golgi. J. Cell Biol. 171, 823–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsukada, M., Will, E. & Gallwitz, D. Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast. Mol. Biol. Cell 10, 63–75 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yoshino, A. et al. tGolgin-1 (p230, golgin-245) modulates Shiga-toxin transport to the Golgi and Golgi motility towards the microtubule-organizing centre. J. Cell Sci. 118, 2279–2293 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Lu, L., Tai, G. & Hong, W. Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-Golgi network. Mol. Biol. Cell 15, 4426–4443 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Panic, B., Whyte, J. R. & Munro, S. The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol. 13, 405–410 (2003). References 61, 62, 64 and 96 describe the mechanism of recruitment and interaction with tethering factors for the Arl1 and Arl3 GTPases at the TGN.

    Article  CAS  PubMed  Google Scholar 

  62. Setty, S. R., Strochlic, T. I., Tong, A. H., Boone, C. & Burd, C. G. Golgi targeting of ARF-like GTPase Arl3p requires its Nα-acetylation and the integral membrane protein Sys1p. Nature Cell Biol. 6, 414–419 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Bonangelino, C. J., Chavez, E. M. & Bonifacino, J. S. Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 2486–2501 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shin, H. W. et al. Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. J. Cell Sci. 118, 4039–4048 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Holthuis, J. C., Nichols, B. J., Dhruvakumar, S. & Pelham, H. R. Two syntaxin homologues in the TGN/endosomal system of yeast. EMBO J. 17, 113–126 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gurunathan, S., Chapman-Shimshoni, D., Trajkovic, S. & Gerst, J. E. Yeast exocytic v-SNAREs confer endocytosis. Mol. Biol. Cell 11, 3629–3643 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miaczynska, M. & Zerial, M. Mosaic organization of the endocytic pathway. Exp. Cell Res. 272, 8–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Perret, E., Lakkaraju, A., Deborde, S., Schreiner, R. & Rodriguez-Boulan, E. Evolving endosomes: how many varieties and why? Curr. Opin. Cell Biol. 17, 423–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Wall, D. A., Wilson, G. & Hubbard, A. L. The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes. Cell 21, 79–93 (1980).

    Article  CAS  PubMed  Google Scholar 

  70. Willingham, M. C., Hanover, J. A., Dickson, R. B. & Pastan, I. Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells. Proc. Natl Acad. Sci. USA 81, 175–179 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marsh, M., Griffiths, G., Dean, G. E., Mellman, I. & Helenius, A. Three-dimensional structure of endosomes in BHK-21 cells. Proc. Natl Acad. Sci. USA 83, 2899–2903 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  Google Scholar 

  73. Hurley, J. H. & Emr, S. D. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu. Rev. Biophys. Biomol. Struct. 35, 277–298 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Caplan, S. et al. A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J. 21, 2557–2567 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carlton, J. G. et al. Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J. Cell Sci. 118, 4527–4539 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Bravo, J. et al. The crystal structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate. Mol Cell. 8, 829–839 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Horazdovsky, B. F. et al. A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol. Biol. Cell 8, 1529–1541 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nothwehr, S. F., Ha, S. A. & Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell Biol. 151, 297–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998). A landmark paper that first characterized the retromer complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Theos, A. C. et al. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol. Biol. Cell 16, 5356–5372 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Verges, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nature Cell Biol. 6, 763–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Pagano, A., Crottet, P., Prescianotto-Baschong, C. & Spiess, M. In vitro formation of recycling vesicles from endosomes requires adaptor protein-1/clathrin and is regulated by rab4 and the connector rabaptin-5. Mol. Biol. Cell 15, 4990–5000 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fölsch, H., Ohno, H., Bonifacino, J. S. & Mellman, I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 99, 189–198 (1999).

    Article  PubMed  Google Scholar 

  85. Gan, Y., McGraw, T. E. & Rodriguez-Boulan, E. The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nature Cell Biol. 4, 605–609 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Lin, S. X., Grant, B., Hirsh, D. & Maxfield, F. R. Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nature Cell Biol. 3, 567–572 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Ullrich, O., Reinsch, S., Urbe, S., Zerial, M. & Parton, R. G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Dugani, C. B. & Klip, A. Glucose transporter 4: cycling, compartments and controversies. EMBO Rep. 6, 1137–1142 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Marcusson, E. G., Horazdovsky, B. F., Cereghino, J. L., Gharakhanian, E. & Emr, S. D. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 77, 579–586 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Bryant, N. J. & Stevens, T. H. Two separate signals act independently to localize a yeast late Golgi membrane protein through a combination of retrieval and retention. J. Cell Biol. 136, 287–297 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stanley, K. K. & Howell, K. E. TGN38/41: a molecule on the move. Trends Cell Biol. 3, 252–255 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Burda, P., Padilla, S. M., Sarkar, S. & Emr, S. D. Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J. Cell Sci. 115, 3889–3900 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Choudhury, R. et al. Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol. Biol. Cell 16, 3467–3479 (2005). References 92 and 93 implicate phosphoinositide-metabolizing enzymes in the regulation of retrograde transport.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, B. & Warner, J. R. Mutation of the Rab6 homologue of Saccharomyces cerevisiae, YPT6, inhibits both early Golgi function and ribosome biosynthesis. J. Biol. Chem. 271, 16813–16819 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Siniossoglou, S., Peak-Chew, S. Y. & Pelham, H. R. Ric1p and Rgp1p form a complex that catalyses nucleotide exchange on Ypt6p. EMBO J. 19, 4885–4894 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Munro, S. The Arf-like GTPase Arl1 and its role in membrane traffic. Biochem. Soc. Trans. 33, 601–605 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Spelbrink, R. G. & Nothwehr, S. F. The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton. Mol. Biol. Cell 10, 4263–4281 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Itin, C., Rancano, C., Nakajima, Y. & Pfeffer, S. R. A novel assay reveals a role for soluble N -ethylmaleimide-sensitive fusion attachment protein in mannose 6-phosphate receptor transport from endosomes to the trans Golgi network. J. Biol. Chem. 272, 27737–27744 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Zolov, S. N. & Lupashin, V. V. Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J. Cell Biol. 168, 747–759 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Smith for help with the figure in BOX 1, D. Banfield, G. Fischer von Mollard, W. Hong, H. Pelham and K. Sandvig for helpful discussions, and G. Mardones and J. Hurley for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan S. Bonifacino or Raul Rojas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank

1H6H

1URU

1W24

1Z2X

2FAU

FURTHER INFORMATION

Juan Bonifacino's homepage

Glossary

Type-I integral membrane protein

A protein that contains a single membrane-spanning domain, with the C terminus orientated towards the cytosol and the N terminus orientated towards the lumen of a membrane compartment or in an extracellular direction.

Clathrin

A structural protein that polymerizes onto membranes as a polyhedral lattice, which often leads to the formation of clathrin-coated vesicles. The sorting of transmembrane cargoes into these vesicles is mediated by various adaptor proteins that link the cytosolic domains of the cargoes to the clathrin lattice.

Retrotranslocation

Transport from the lumen of the endoplasmic reticulum (ER) to the cytosol. This process is the reverse of protein import into the ER, and is generally followed by proteins that are targeted for ER-associated degradation (ERAD).

Divalent-metal-containing phosphoesterases

A family of enzymes that contain two divalent cations and hydrolyse phosphate–ester bonds. This family includes various phosphatases and nucleases.

COPI

(coatomer protein complex-I). A heteroheptameric protein complex that is recruited to membranes by Arf (ADP-ribosylation factor) GTPases and that mediates intra-Golgi transport and retrograde transport from the Golgi complex to the endoplasmic reticulum.

COPII

(coatomer protein complex-II). A protein complex consisting of two heterodimers, Sec23–Sec24 and Sec13–Sec31, that are recruited to endoplasmic reticulum (ER) exit sites by the small GTPase Sar1. COPII promotes the formation of vesicles that mediate the export of cargo from the ER to the Golgi complex.

Rab GTPases

Members of the Ras superfamily of small GTP-binding proteins that function in the tethering and docking of vesicles to their target compartments prior to membrane fusion. Rab proteins also participate in cargo selection, vesicle budding and organelle motility.

PX domain

(Phox-homology domain). These domains are lipid- and protein-interaction domains that consist of 100–130 amino acids and are defined by sequences that are found in two components of the phagocyte NADPH oxidase (phox) complex.

BAR domain

This domain gets its acronym from the fact that it is found in the proteins Bin, amphiphysin and Rvs. This domain dimerizes and binds to highly curved membranes such as those found in the tubular elements of endosomes.

AP3

(adaptor protein-3). A heterotetrameric protein complex that associates with endosomes and promotes the transport of tyrosinase to melanosomes and lysosome-associated membrane proteins to lysosomes.

Dynamins

Large G-proteins that belong to a protein superfamily that, in eukaryotes, includes classical dynamins, dynamin-like proteins, mitofusins and atlastins. Dynamins are involved in the scission of a wide range of vesicles and organelles.

Palmitoylation

A post-translational modification that involves the addition of a 16-carbon fatty acid, palmitic acid, to a cysteine residue through a thioester bond.

Arl GTPases

Small Arf (ADP-ribosylation factor)-like GTPases that participate in the fusion of retrograde transport carriers with the trans-Golgi network.

GGA proteins

(Golgi-localized, γ-ear-containing, ADP-ribosylation-factor-binding proteins). Monomeric clathrin adaptors that mediate the transport of mannose 6-phosphate receptors and other transmembrane proteins between the trans-Golgi network and endosomes. They also seem to have a role in targeting transmembrane proteins to the multivesicular-body pathway.

ESCRT machinery

(Endosomal sorting complex required for transport machinery). Machinery that comprises three ESCRT complexes that mediate the sorting of transmembrane cargo from the limiting membrane into the intralumenal vesicles of multivesicular bodies.

Multivesicular bodies

Endocytic organelles that contain small vesicles in their interior and that are intermediate compartments in the lysosomal degradation pathway.

EHD proteins

(Eps15-homology-domain proteins). These proteins are part of the machinery that returns internalized transmembrane proteins to the plasma membrane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonifacino, J., Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 7, 568–579 (2006). https://doi.org/10.1038/nrm1985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing