Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular bioenergetics as a target for obesity therapy

Key Points

  • Adaptive thermogenesis, defined as the heat produced in response to environmental temperature or diet, can be divided into three subtypes. Cold exposure induces shivering thermogenesis, a function of skeletal muscle, and non-shivering thermogenesis, a function of brown fat. Overfeeding triggers diet-induced thermogenesis; this is also a function of brown fat.

  • Recent studies using positron emission tomography (PET) and computed tomography (CT) imaging prove that adult humans possess physiologically active uncoupled protein 1 (UCP1)-positive brown fat, leading to the consideration within the medical and scientific communities that brown fat may play a part in normal physiology and could be a target for obesity treatment.

  • There are at least two types of brown fat cells located in different anatomical locations in mice, each arising from different developmental origins. Compared with the preformed interscapular brown fat cells, the systemic brown fat cells, found in white fat and between muscle bundles, are often found admixed with white adipocytes; are more sensitive to β3-adrenergic receptor stimulation and cold exposure; and have a thermogenic capacity that seems to be regulated by genetic background. The contribution of the two different populations of progenitors to adult human brown fat remains to be determined.

  • Three types of thermogenesis occur in skeletal muscle: exercise-induced thermogenesis, non-exercise activity thermogenesis, and cold-induced shivering thermogenesis. Thus, therapeutic interventions that mimic these mechanisms could potentially increase the thermogenic capacity of muscle and counteract obesity. This is especially beneficial to individuals with physical limitations in exercising or to those who are genetically predisposed to obesity.

  • Based on the current knowledge of bioenergetics, four potential therapeutic approaches could be envisioned: increasing brown fat differentiation from progenitor cells; activating brown fat thermogenesis; promoting skeletal muscle thermogenesis; or increasing general mitochondrial uncoupling.

Abstract

Obesity develops when energy intake exceeds energy expenditure. Although most current obesity therapies are focused on reducing calorific intake, recent data suggest that increasing cellular energy expenditure (bioenergetics) may be an attractive alternative approach. This is especially true for adaptive thermogenesis — the physiological process whereby energy is dissipated in mitochondria of brown fat and skeletal muscle in the form of heat in response to external stimuli. There have been significant recent advances in identifying the factors that control the development and function of these tissues, and in techniques to measure brown fat in human adults. In this article, we integrate these developments in relation to the classical understandings of cellular bioenergetics to explore the potential for developing novel anti-obesity therapies that target cellular energy expenditure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular energy utilization.
Figure 2: Molecular mechanisms of cellular thermogenesis.
Figure 3: Lineage determination and control of brown adipocyte development.
Figure 4: Approaches to increasing thermogenesis as an anti-obesity therapy.

Similar content being viewed by others

References

  1. Haslam, D. W. & James, W. P. Obesity. Lancet 366, 1197–1209 (2005).

    Article  PubMed  Google Scholar 

  2. Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Lowell, B. B. & Spiegelman, B. M. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Wing, R. R. & Phelan, S. Long-term weight loss maintenance. Am. J. Clin. Nutr. 82, 222S–225S (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kaplan, L. M. Pharmacological therapies for obesity. Gastroenterol. Clin. North Am. 34, 91–104 (2005).

    Article  PubMed  Google Scholar 

  6. Welle, S., Forbes, G. B., Statt, M., Barnard, R. R. & Amatruda, J. M. Energy expenditure under free-living conditions in normal-weight and overweight women. Am. J. Clin. Nutr. 55, 14–21 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Melnikova, I. & Wages, D. Anti-obesity therapies. Nature Rev. Drug Discov. 5, 369–370 (2006).

    Article  CAS  Google Scholar 

  8. Wells, J. C. Thrift: a guide to thrifty genes, thrifty phenotypes and thrifty norms. Int. J. Obes. (Lond.) 33, 1331–1318 (2009).

    Article  CAS  Google Scholar 

  9. Speakman, J. R. A nonadaptive scenario explaining the genetic predisposition to obesity: the “predation release” hypothesis. Cell. Metab. 6, 5–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Padwal, R. S. & Majumdar, S. R. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369, 71–77 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Redman, L. M. et al. Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss. PLoS ONE 4, e4377 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Leibel, R. L., Rosenbaum, M. & Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 332, 621–628 (1995). This paper demonstrates that changes in body weight by diet are associated with compensatory changes in energy expenditure, which may account for the poor long-term efficacy of treatments for obesity.

    Article  CAS  PubMed  Google Scholar 

  13. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  PubMed  Google Scholar 

  15. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zingaretti, M. C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113–3120 (2009). References 13–17 report the rediscovery of metabolically active brown fat in adult humans using non-invasive PET and CT scans coupled with immunohistochemistry, electron microscopy, and gene and protein expression assays. These led to the consideration that brown fat may play a role in normal physiology and could be a target for obesity treatment.

    Article  CAS  PubMed  Google Scholar 

  18. Harper, M. E., Green, K. & Brand, M. D. The efficiency of cellular energy transduction and its implications for obesity. Annu. Rev. Nutr. 28, 13–33 (2008). This comprehensive review discusses bioenergetics and the reasons for targeting uncoupling for the treatment of obesity.

    Article  CAS  PubMed  Google Scholar 

  19. Gosselin, C. & Cote, G. Weight loss maintenance in women two to eleven years after participating in a commercial program: a survey. BMC Womens Health 1, 2 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tam, J., Fukumura, D. & Jain, R. K. A mathematical model of murine metabolic regulation by leptin: energy balance and defense of a stable body weight. Cell. Metab. 9, 52–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chow, C. C. & Hall, K. D. The dynamics of human body weight change. PLoS Comput. Biol. 4, e1000045 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Green, D. E. & Zande, H. D. Universal energy principle of biological systems and the unity of bioenergetics. Proc. Natl Acad. Sci. USA 78, 5344–5347 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clapham, J. C. & Arch., J. R. Thermogenic and metabolic antiobesity drugs: rationale and opportunities. Diabetes Obes. Metab. 9, 259–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, F. A. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789 (1963).

    Article  CAS  PubMed  Google Scholar 

  25. Newsholme, E. A. & Crabtree, B. Substrate cycles in metabolic regulation and in heat generation. Biochem. Soc. Symp. 61–109 (1976).

  26. Wolfe, R. R., Herndon, D. N., Jahoor, F., Miyoshi, H. & Wolfe, M. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N. Engl. J. Med. 317, 403–408 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Klein, S. & Wolfe, R. R. Whole-body lipolysis and triglyceride-fatty acid cycling in cachectic patients with esophageal cancer. J. Clin. Invest. 86, 1403–1408 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wolfe, R. R., Klein, S., Carraro, F. & Weber, J. M. Role of triglyceride–fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am. J. Physiol. 258, E382–E389 (1990).

    CAS  PubMed  Google Scholar 

  29. Mazzucotelli, A. et al. The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)γ coactivator-1α and the nuclear receptor PPARα control the expression of glycerol kinase and metabolism genes independently of PPARγ activation in human white adipocytes. Diabetes 56, 2467–2475 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Golozoubova, V. et al. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J. 15, 2048–2050 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Kontani, Y. et al. UCP1 deficiency increases susceptibility to diet-induced obesity with age. Aging Cell 4, 147–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell. Metab. 9, 203–209 (2009). This paper demonstrates that diet-induced thermogenesis is fully dependent on UCP1, thus Ucp1 -knockout mice exhibit increased susceptibility to diet-induced obesity when kept at thermoneutrality.

    Article  CAS  PubMed  Google Scholar 

  34. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. & Kozak, L. P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96, 2914–2923 (1995).

    Article  CAS  Google Scholar 

  35. Leonardsson, G. et al. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc. Natl Acad. Sci. USA 101, 8437–8442 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Foster, D. O. & Frydman, M. L. Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can. J. Physiol. Pharmacol. 57, 257–270 (1979).

    Article  CAS  PubMed  Google Scholar 

  37. Mifflin, M. D. et al. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 51, 241–247 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Rothwell, N. J. & Stock, M. J. Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin. Sci. (Lond.) 64, 19–23 (1983).

    Article  CAS  Google Scholar 

  39. Bouchard, C. et al. The response to long-term overfeeding in identical twins. N. Engl. J. Med. 322, 1477–1482 (1990). This study suggests that genetic factors play a major role for the variations in weight gain in response to overfeeding.

    Article  CAS  PubMed  Google Scholar 

  40. Maes, H. H., Neale, M. C. & Eaves, L. J. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 27, 325–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Christiansen, E., Garby, L. & Sorensen, T. I. Quantitative analysis of the energy requirements for development of obesity. J. Theor. Biol. 234, 99–106 (2005).

    Article  PubMed  Google Scholar 

  42. [No authors listed]. Human energy requirements: report of a joint FAO/WHO/UNU expert consultation. Food. Nutr. Bull. 26, 166 (2005).

  43. Levine, J. A. Nonexercise activity thermogenesis — liberating the life-force. J. Intern. Med. 262, 273–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Stowell, K. M. Malignant hyperthermia: a pharmacogenetic disorder. Pharmacogenomics 9, 1657–1672 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Wijers, S. L., Schrauwen, P., Saris, W. H. & Marken Lichtenbelt, W. D. Human skeletal muscle mitochondrial uncoupling is associated with cold induced adaptive thermogenesis. PLoS ONE 3, e1777 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Himms-Hagen, J. Exercise in a pill: feasibility of energy expenditure targets. Curr. Drug Targets CNS Neurol. Disord. 3, 389–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Lean, M. E., James, W. P., Jennings, G. & Trayhurn, P. Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin. Sci. (Lond.) 71, 291–297 (1986).

    Article  CAS  Google Scholar 

  48. Neumann, R. O. Experimentelle Beitrage Zur Lehre von den taglichen Nahrungsbedarf des Menschen unter besonderer Bernuksichtigung der notwendigen Eiweissmenge. Archiv fur Hygeine 45, 1–87 (1902) (in German).

    CAS  Google Scholar 

  49. Rothwell, N. J. & Stock, M. J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31–35 (1979). This paper establishes the importance of diet-induced thermogenesis via the function of brown fat in energy balance, and suggests that BAT plays a key part in metabolic efficiency and resistance to obesity.

    Article  CAS  PubMed  Google Scholar 

  50. Trayhurn, P., Thurlby, P. L. & James, W. P. Thermogenic defect in pre-obese ob/ob mice. Nature 266, 60–62 (1977).

    Article  CAS  PubMed  Google Scholar 

  51. Trayhurn, P., Goodbody, A. E. & James, W. P. A role for brown adipose tissue in the genesis of obesity? Studies on experimental animals. Proc. Nutr. Soc. 41, 127–131 (1982).

    Article  CAS  PubMed  Google Scholar 

  52. Mercer, S. W. & Trayhurn, P. Effect of high fat diets on energy balance and thermogenesis in brown adipose tissue of lean and genetically obese ob/ob mice. J. Nutr. 117, 2147–2153 (1987).

    Article  CAS  PubMed  Google Scholar 

  53. Wijers, S. L., Saris, W. H. & Marken Lichtenbelt, W. D. Individual thermogenic responses to mild cold and overfeeding are closely related. J. Clin. Endocrinol. Metab. 92, 4299–4305 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Hosaka, T. et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc. Natl Acad. Sci. USA 101, 2975–2980 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakamura, K. & Morrison, S. F. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R127–R136 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Morrison, S. F., Nakamura, K. & Madden, C. J. Central control of thermogenesis in mammals. Exp. Physiol. 93, 773–797 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nakamura, K. & Morrison, S. F. A thermosensory pathway that controls body temperature. Nature Neurosci. 11, 62–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, Y. H., Yanase-Fujiwara, M., Hosono, T. & Kanosue, K. Warm and cold signals from the preoptic area: which contribute more to the control of shivering in rats? J. Physiol. 485, 195–202 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tanaka, M., Owens, N. C., Nagashima, K., Kanosue, K. & McAllen, R. M. Reflex activation of rat fusimotor neurons by body surface cooling, and its dependence on the medullary raphe. J. Physiol. 572, 569–583 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brown, J. W., Sirlin, E. A., Benoit, A. M., Hoffman, J. M. & Darnall, R. A. Activation of 5-HT1A receptors in medullary raphe disrupts sleep and decreases shivering during cooling in the conscious piglet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R884–R894 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Vybiral, S., Lesna, I., Jansky, L. & Zeman, V. Thermoregulation in winter swimmers and physiological significance of human catecholamine thermogenesis. Exp. Physiol. 85, 321–326 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. van Ooijen, A. M., Marken Lichtenbelt, W. D., van Steenhoven, A. A. & Westerterp, K. R. Cold-induced heat production preceding shivering. Br. J. Nutr. 93, 387–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Golozoubova, V. et al. Depressed thermogenesis but competent brown adipose tissue recruitment in mice devoid of all hormone-binding thyroid hormone receptors. Mol. Endocrinol. 18, 384–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Silva, J. E. Thermogenic mechanisms and their hormonal regulation. Physiol. Rev. 86, 435–464 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Mistry, A. M., Swick, A. G. & Romsos, D. R. Leptin rapidly lowers food intake and elevates metabolic rates in lean and ob/ob mice. J. Nutr. 127, 2065–2072 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Commins, S. P. et al. Norepinephrine is required for leptin effects on gene expression in brown and white adipose tissue. Endocrinology 140, 4772–4778 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Elmquist, J. K., Maratos-Flier, E., Saper, C. B. & Flier, J. S. Unraveling the central nervous system pathways underlying responses to leptin. Nature Neurosci. 1, 445–449 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Harris, R. B. Leptin — much more than a satiety signal. Annu. Rev. Nutr. 20, 45–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Rosenbaum, M. et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest. 115, 3579–3586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ferrannini, E. et al. Insulin: new roles for an ancient hormone. Eur. J. Clin. Invest. 29, 842–852 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Weyer, C., Bogardus, C., Mott, D. M. & Pratley, R. E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest. 104, 787–794 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ghorbani, M., Claus, T. H. & Himms-Hagen, J. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a β3-adrenoceptor agonist. Biochem. Pharmacol. 54, 121–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Guerra, C., Koza, R. A., Yamashita, H., Walsh, K. & Kozak, L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 102, 412–420 (1998). This paper reports that genetic backgrounds affect the emergence of brown adipocytes within white fat in response to β 3 -adrenergic receptor stimulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993). This study uses a transgenic toxigene approach to ablate BAT in mice, and demonstrates that brown fat deficiency leads to increased metabolic efficiency and obesity.

    Article  CAS  PubMed  Google Scholar 

  76. Heaton, J. M. The distribution of brown adipose tissue in the human. J. Anat. 112, 35–39 (1972).

    CAS  Google Scholar 

  77. Astrup, A. Thermogenesis in human brown adipose tissue and skeletal muscle induced by sympathomimetic stimulation. Acta Endocrinol. Suppl. (Copenh.) 278, 1–32 (1986).

    CAS  Google Scholar 

  78. Weyer, C., Tataranni, P. A., Snitker, S., Danforth, E. Jr & Ravussin, E. Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective β3-adrenoceptor agonist in humans. Diabetes 47, 1555–1561 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Larsen, T. M. et al. Effect of a 28-d treatment with L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am. J. Clin. Nutr. 76, 780–788 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Cunningham, S. et al. The characterization and energetic potential of brown adipose tissue in man. Clin. Sci. (Lond.) 69, 343–348 (1985).

    Article  CAS  Google Scholar 

  81. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Schoder, H., Larson, S. M. & Yeung, H. W. PET/CT in oncology: integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J. Nucl. Med. 45 (Suppl. 1), 72–81 (2004).

    Google Scholar 

  83. Hany, T. F. et al. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nucl. Med. Mol. Imaging 29, 1393–1398 (2002).

    Article  PubMed  Google Scholar 

  84. Cohade, C., Osman, M., Pannu, H. K. & Wahl, R. L. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J. Nucl. Med. 44, 170–176 (2003). References 81, 83 and 84 suggest that brown fat can be visualized in adult humans by PET and CT scans.

    CAS  PubMed  Google Scholar 

  85. Ravussin, E. & Kozak, L. P. Have we entered the brown adipose tissue renaissance? Obes. Rev. 10, 265–268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Almind, K., Manieri, M., Sivitz, W. I., Cinti, S. & Kahn, C. R. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc. Natl Acad. Sci. USA 104, 2366–2371 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xue, B. et al. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res. 48, 41–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Cohade, C., Mourtzikos, K. A. & Wahl, R. L. “USA-Fat”: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J. Nucl. Med. 44, 1267–1270 (2003).

    PubMed  Google Scholar 

  89. Gesta, S., Tseng, Y. H. & Kahn, C. R. Developmental origin of fat: tracking obesity to its source. Cell 131, 242–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Atit, R. et al. β-Catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev. Biol. 296, 164–176 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl Acad. Sci. USA 104, 4401–4406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008). References 90–92 demonstrate a common developmental ancestry for interscapular brown fat and skeletal muscle in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classical brown adipocytes. J. Biol. Chem. 285, 7153–7164 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Cinti, S. Transdifferentiation properties of adipocytes in the adipose organ. Am. J. Physiol. Endocrinol. Metab. 297, E977–E986 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Fink, B. D. et al. Mitochondrial proton leak in obesity-resistant and obesity-prone mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1773–R1780 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Lean, M. E. J. & James, W. P. T. in Brown Adipose Tissue (eds Trayhurn, P. & Nicholls, D. G.) 339–365 (Edward Arnold, London, 1986).

    Google Scholar 

  97. Choy, L. & Derynck, R. Transforming growth factor-β inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J. Biol. Chem. 278, 9609–9619 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Alessi, M. C. et al. Plasminogen activator inhibitor 1, transforming growth factor-β1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 49, 1374–1380 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Samad, F., Yamamoto, K., Pandey, M. & Loskutoff, D. J. Elevated expression of transforming growth factor-β in adipose tissue from obese mice. Mol. Med. 3, 37–48 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schulz, T. J. & Tseng, Y. H. Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine. Growth Factor Rev. 20, 523–531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008). This paper identifies BMP7 as an inducer of brown adipocyte differentiation, and demonstrates that adenoviral-mediated expression of BMP7 in mice leads to increased brown fat-mediated energy expenditure and reduced weight gain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shen, J. J. et al. Deficiency of growth differentiation factor 3 protects against diet-induced obesity by selectively acting on white adipose. Mol. Endocrinol. 23, 113–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Yamashita, H. et al. Basic fibroblast growth factor (bFGF) contributes to the enlargement of brown adipose tissue during cold acclimation. Pflugers Arch. 428, 352–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Konishi, M., Mikami, T., Yamasaki, M., Miyake, A. & Itoh, N. Fibroblast growth factor-16 is a growth factor for embryonic brown adipocytes. J. Biol. Chem. 275, 12119–12122 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Tomlinson, E. et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143, 1741–1747 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Badman, M. K. et al. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell. Metab. 5, 426–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Kharitonenkov, A. et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627–1635 (2005).

    Article  CAS  Google Scholar 

  108. Mori, K. et al. Disruption of klotho gene causes an abnormal energy homeostasis in mice. Biochem. Biophys. Res. Commun. 278, 665–670 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Tseng, Y. H., Kriauciunas, K. M., Kokkotou, E. & Kahn, C. R. Differential roles of insulin receptor substrates in brown adipocyte differentiation. Mol. Cell Biol. 24, 1918–1929 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fasshauer, M. et al. Essential role of insulin receptor substrate-2 in insulin stimulation of glut4 translocation and glucose uptake in brown adipocytes. J. Biol. Chem. 275, 25494–25501 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Tseng, Y. H., Ueki, K., Kriauciunas, K. M. & Kahn, C. R. Differential roles of insulin receptor substrates in the anti-apoptotic function of insulin-like growth factor-1 and insulin. J. Biol. Chem. 277, 31601–31611 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Levine, J. A., Eberhardt, N. L. & Jensen, M. D. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283, 212–214 (1999). This paper suggests the importance of non-exercise activity thermogenesis in dissipating excess energy to preserve leanness in humans.

    Article  CAS  PubMed  Google Scholar 

  113. Badjatia, N. et al. Predictors and clinical implications of shivering during therapeutic normothermia. Neurocrit. Care 6, 186–191 (2007).

    Article  PubMed  Google Scholar 

  114. Goodyear, L. J. The exercise pill — too good to be true? N. Engl. J. Med. 359, 1842–1844 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Arruda, A. P. et al. Cold tolerance in hypothyroid rabbits: role of skeletal muscle mitochondria and sarcoplasmic reticulum Ca2+ ATPase isoform 1 heat production. Endocrinology 149, 6262–6271 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Nelson, D. L. & Gehlert, D. R. Central nervous system biogenic amine targets for control of appetite and energy expenditure. Endocrine 29, 49–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Astrup, A., Bulow, J., Madsen, J. & Christensen, N. J. Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am. J. Physiol. 248, E507–E515 (1985).

    CAS  PubMed  Google Scholar 

  120. Elabd, C. et al. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27, 2753–2760 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Crisan, M. et al. A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells 26, 2425–2433 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Tobin, J. F. & Celeste, A. J. Bone morphogenetic proteins and growth differentiation factors as drug targets in cardiovascular and metabolic disease. Drug Discov. Today 11, 405–411 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Li, T., Surendran, K., Zawaideh, M. A., Mathew, S. & Hruska, K. A. Bone morphogenetic protein 7: a novel treatment for chronic renal and bone disease. Curr. Opin. Nephrol. Hypertens. 13, 417–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, S. et al. Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int. 63, 2037–2049 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Chou, J. et al. Neuroregenerative effects of BMP7 after stroke in rats. J. Neurol. Sci. 240, 21–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Harvey, B. K. et al. Neurotrophic effects of bone morphogenetic protein-7 in a rat model of Parkinson's disease. Brain Res. 1022, 88–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Zuch, C. L. et al. Beneficial effects of intraventricularly administered BMP-7 following a striatal 6-hydroxydopamine lesion. Brain Res. 1010, 10–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Med. 13, 952–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Sugimoto, H. et al. BMP-7 functions as a novel hormone to facilitate liver regeneration. FASEB J. 21, 256–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Beenken, A. & Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nature Rev. Drug Discov. 8, 235–253 (2009).

    Article  CAS  Google Scholar 

  131. Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell. Metab. 6, 38–54 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hansen, J. B. et al. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc. Natl Acad. Sci. USA 101, 4112–4117 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tseng, Y. H. et al. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nature Cell Biol. 7, 601–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Shekelle, P. G. et al. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA 289, 1537–1545 (2003).

    CAS  PubMed  Google Scholar 

  135. Baba, S. et al. Effect of nicotine and ephedrine on the accumulation of 18F-FDG in brown adipose tissue. J. Nucl. Med. 48, 981–986 (2007).

    Article  CAS  Google Scholar 

  136. Magkos, F. & Kavouras, S. A. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit. Rev. Food. Sci. Nutr. 45, 535–562 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Huang, Z. L. et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nature Neurosci. 8, 858–859 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Dhar, R. et al. Cardiovascular toxicities of performance-enhancing substances in sports. Mayo Clin. Proc. 80, 1307–1315 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Boozer, C. N. et al. Herbal ephedra/caffeine for weight loss: a 6-month randomized safety and efficacy trial. Int. J. Obes. Relat Metab. Disord. 26, 593–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. De Matteis, R. et al. Immunohistochemical identification of the β3-adrenoceptor in intact human adipocytes and ventricular myocardium: effect of obesity and treatment with ephedrine and caffeine. Int. J. Obes. Relat Metab. Disord. 26, 1442–1450 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Arch., J. R. The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: perspectives from β3-adrenoceptor agonists. Naunyn Schmiedebergs. Arch. Pharmacol. 378, 225–240 (2008). This review addresses the effects of leptin on weight loss, and gives a comprehensive discussion of the attempts to develop β 3 -adrenergic receptor agonists to treat obesity.

    Article  CAS  PubMed  Google Scholar 

  142. van Baak, M. A. et al. Acute effect of L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure in obese men. Clin. Pharmacol. Ther. 71, 272–279 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Colman, E. Dinitrophenol and obesity: an early twentieth-century regulatory dilemma. Regul. Toxicol. Pharmacol. 48, 115–117 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Baxter, J. D. & Webb, P. Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nature Rev. Drug Discov. 8, 308–320 (2009).

    Article  CAS  Google Scholar 

  145. Villicev, C. M. et al. Thyroid hormone receptor beta-specific agonist GC-1 increases energy expenditure and prevents fat-mass accumulation in rats. J. Endocrinology 193, 21–29 (2007).

    Article  CAS  Google Scholar 

  146. Bryzgalova, G. et al. Anti-obesity, anti-diabetic, and lipid lowering effects of the thyroid receptor β subtype selective agonist KB-141. J. Steroid Biochem. Mol. Biol. 111, 262–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell. Metab. 10, 167–177 (2009). This paper reports that the compound INT-777, a selective agonist of the TGR5 receptor, induces intestinal GLP1 release and leads to improved liver and pancreatic function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tiwari, A. & Maiti, P. TGR5: an emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders. Drug Discov. Today 14, 523–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  151. Friedman, J. M. Leptin at 14 y of age: an ongoing story. Am. J. Clin. Nutr. 89, 973S–979S (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bluher, S. & Mantzoros, C. S. Leptin in humans: lessons from translational research. Am. J. Clin. Nutr. 89, 991S–997S (2009).

  153. Welt, C. K. et al. Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med. 351, 987–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Roth, J. D. et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc. Natl Acad. Sci. USA 105, 7257–7262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yamamoto, H., Schoonjans, K. & Auwerx, J. Sirtuin functions in health and disease. Mol. Endocrinol. 21, 1745–1755 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Feige, J. N. et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell. Metab. 8, 347–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Koh, H. J., Brandauer, J. & Goodyear, L. J. LKB1 and AMPK and the regulation of skeletal muscle metabolism. Curr. Opin. Clin. Nutr. Metab. Care 11, 227–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ruderman, N. B., Saha, A. K. & Kraegen, E. W. Minireview: malonyl CoA, AMP-activated protein kinase, and adiposity. Endocrinology 144, 5166–5171 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Guigas, B. et al. Beyond AICA riboside: in search of new specific AMP-activated protein kinase activators. IUBMB Life 61, 18–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lou, P. H. et al. Mitochondrial uncouplers with an extraordinary dynamic range. Biochem. J. 407, 129–140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nature Rev. Mol. Cell Biol. 7, 885–896 (2006).

    Article  CAS  Google Scholar 

  166. Hansen, J. B. & Kristiansen, K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem. J. 398, 153–168 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Farmer, S. R. Molecular determinants of brown adipocyte formation and function. Genes. Dev. 22, 1269–1275 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Scime, A. et al. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1α. Cell. Metab. 2, 283–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Kiskinis, E. et al. RIP140 directs histone and DNA methylation to silence Ucp1 expression in white adipocytes. EMBO J. 26, 4831–4840 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Powelka, A. M. et al. Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J. Clin. Invest. 116, 125–136 (2006).

    Article  CAS  Google Scholar 

  171. Kajimura, S. et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes. Dev. 22, 1397–1409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature 460, 1154-1158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chiu, Y. H., Lee, T. H. & Shen, W. W. Use of low-dose topiramate in substance use disorder and bodyweight control. Psychiatry Clin. Neurosci. 61, 630–633 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Gadde, K. M., Franciscy, D. M., Wagner, H. R. & Krishnan, K. R. Zonisamide for weight loss in obese adults: a randomized controlled trial. JAMA 289, 1820–1825 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Musi, N. & Goodyear, L. J. Insulin resistance and improvements in signal transduction. Endocrine 29, 73–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. English, P. J. et al. Metformin prolongs the postprandial fall in plasma ghrelin concentrations in type 2 diabetes. Diabetes Metab. Res. Rev. 23, 299–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Ahima, R. S. et al. Appetite suppression and weight reduction by a centrally active aminosterol. Diabetes 51, 2099–2104 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Sowers, J. R. Endocrine functions of adipose tissue: focus on adiponectin. Clin. Cornerstone 9, 32–38 (2008).

    Article  PubMed  Google Scholar 

  179. Bays, H. E. Current and investigational antiobesity agents and obesity therapeutic treatment targets. Obes. Res. 12, 1197–1211 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Ravussin, E. et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring) 17, 1736–1743 (2009).

    Article  CAS  Google Scholar 

  181. Remesar, X. et al. Oral oleoyl-estrone induces the rapid loss of body fat in Zucker lean rats fed a hyperlipidic diet. Int. J. Obes. Relat. Metab. Disord. 24, 1405–1412 (2000).

    Article  CAS  Google Scholar 

  182. McCarthy, A. A. When enough is too much: new strategies to treat obesity. Chem. Biol. 11, 1025–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Chaudhri, O. B., Wynne, K. & Bloom, S. R. Can gut hormones control appetite and prevent obesity? Diabetes Care 31 (Suppl. 2), 284–289 (2008).

    Article  CAS  Google Scholar 

  184. Glazer, G. Long-term pharmacotherapy of obesity 2000: a review of efficacy and safety. Arch. Intern. Med. 161, 1814–1824 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Hansen, R. A., Gartlehner, G., Lohr, K. N. & Kaufer, D. I. Functional outcomes of drug treatment in Alzheimer's disease: a systematic review and meta-analysis. Drugs Aging 24, 155–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Astrup, A. et al. Effect of tesofensine on bodyweight loss, body composition, and quality of life in obese patients: a randomised, double-blind, placebo-controlled trial. Lancet 372, 1906–1913 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Appolinario, J. C., Bueno, J. R. & Coutinho, W. Psychotropic drugs in the treatment of obesity: what promise? CNS Drugs 18, 629–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Dwoskin, L. P., Rauhut, A. S., King-Pospisil, K. A. & Bardo, M. T. Review of the pharmacology and clinical profile of bupropion, an antidepressant and tobacco use cessation agent. CNS Drug Rev. 12, 178–207 (2006).

    Article  PubMed  Google Scholar 

  189. Chandra, R. & Liddle, R. A. Cholecystokinin. Curr. Opin. Endocrinol. Diabetes Obes. 14, 63–67 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Smith, S. R. et al. Lorcaserin (APD356), a selective 5-HT2C agonist, reduces body weight in obese men and women. Obesity (Silver Spring) 17, 494–503 (2009).

    Article  CAS  Google Scholar 

  191. Van der Ploeg, L. H. et al. Design and synthesis of (ant)-agonists that alter appetite and adiposity. Prog. Brain Res. 153, 107–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Adan, R. A. et al. The MC4 receptor and control of appetite. Br. J. Pharmacol. 149, 815–827 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Barak, N., Greenway, F. L., Fujioka, K., Aronne, L. J. & Kushner, R. F. Effect of histaminergic manipulation on weight in obese adults: a randomized placebo controlled trial. Int. J. Obes. (Lond.) 32, 1559–1565 (2008).

    Article  CAS  Google Scholar 

  194. Greenway, F. L. et al. Rational design of a combination medication for the treatment of obesity. Obesity (Silver Spring) 17, 30–39 (2009).

    Article  CAS  Google Scholar 

  195. Li, J. et al. In vitro and in vivo profile of 5-[(4′-trifluoromethyl-biphenyl-2-carbonyl)-amino]-1H-indole-2-carboxylic acid benzylmethyl carbamoylamide (dirlotapide), a novel potent MTP inhibitor for obesity. Bioorg. Med. Chem. Lett. 17, 1996–1999 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Idris, I. & Donnelly, R. Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes. Metab. 11, 79–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Carlson, M. J. & Cummings, D. E. Prospects for an anti-ghrelin vaccine to treat obesity. Mol. Interv. 6, 249–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Morton, N. M. & Seckl, J. R. 11β-hydroxysteroid dehydrogenase type 1 and obesity. Front. Horm. Res. 36, 146–164 (2008).

    Article  CAS  Google Scholar 

  199. Hartman, M. L. et al. Growth hormone replacement therapy in adults with growth hormone deficiency improves maximal oxygen consumption independently of dosing regimen or physical activity. J. Clin. Endocrinol. Metab. 93, 125–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Ruderman, N. B. et al. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. Acta Physiol. Scand. 178, 435–442 (2003).

    Article  CAS  PubMed  Google Scholar 

  201. Ahmadian, M. et al. Adipose overexpression of desnutrin promotes fatty acid use and attenuates diet-induced obesity. Diabetes 58, 855–866 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kok, P. et al. Activation of dopamine D2 receptors simultaneously ameliorates various metabolic features of obese women. Am. J. Physiol. Endocrinol. Metab. 291, E1038–E1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  203. Wang, Y. X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Buckley, J. D. & Howe, P. R. Anti-obesity effects of long-chain omega-3 polyunsaturated fatty acids. Obes. Rev. 10, 648–659 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. J. Goodyear for critical reading of the manuscript. This work was supported in part by National Institutes of Health (NIH) grants DK077097 (to Y.-H.T.); DK082659 (to C.R.K); and DK046200, DK081604 and RR025757 (to A.M.C.). And grants to the Joslin Diabetes Center's Diabetes and Endocrinology Research Center (P30 DK036836 from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)). Work was also supported by funding from the Harvard Stem Cell Institute (to Y.-H.T.); the Harvard Catalyst/Harvard Clinical and Translational Science Center, RR025758 (to Y.-H.T. and A.M.C.). The content herein is solely the responsibility of the authors and does not necessarily represent the official views of the NIDDK or the NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Hua Tseng or C. Ronald Kahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Obesity

ClinicalTrials.gov 

NCT00168519

NCT00297180

NCT00398619

NCT00542009

NCT00622765

NCT00650806

NCT00654667

NCT00748605

NCT00760760

NCT00779519

FURTHER INFORMATION

Yu-Hua Tseng's homepage

C. Ronald Kahn's homepage

Glossary

Standard metabolic rate

The steady-state rate of energy utilized by a whole organism that is awake but resting, stress free, not actively digesting food, and is at thermoneutrality.

Basal metabolic rate

(BMR). The energy expended by an individual when physically and mentally at rest 12–18 hours after a meal in a thermoneutral environment. It is similar to the standard metabolic rate, although it is now usually applied to human metabolism only.

Thermoneutrality

The environmental temperature at which heat production is not stimulated, e.g., 28°C for adult humans. In general, humans usually make the microclimate thermoneutral through clothing choices.

Adaptive thermogenesis

Heat production in response to environmental temperature or diet. It serves the purpose of protecting the organism from cold exposure or regulating energy balance after changes in diet. Brown fat and skeletal muscle are the two principal sites of adaptive thermogenesis.

Bioenergetics

Studies the flow of chemical bond energy within organisms. In a living cell, the principal reactions of fuel metabolism take place in the mitochondria, where food energy is released, oxygen is consumed, and water and carbon dioxide are produced.

Coupled

Coupled in this article refers to processes in which the energy released by one reaction is directly used to drive another one; e.g., protons rushing into the mitochondrial matrix is coupled to ATP production.

Uncoupled

Uncoupled in this article refers to processes in which the energy released is not used by the cell to drive another process; e.g., ion leak.

Diet-induced thermogenesis

The heat produced in response to diet that allows excessive calorific intake. It primarily occurs in brown fat.

Resting metabolic rate

The amount of energy expended at rest. It is also similar to the standard metabolic rate, except that the metabolic rate is measured while the organism is still digesting food.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, YH., Cypess, A. & Kahn, C. Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov 9, 465–482 (2010). https://doi.org/10.1038/nrd3138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3138

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research