Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A cascaded silicon Raman laser

Abstract

One of the major advantages of Raman lasers is their ability to generate coherent light in wavelength regions that are not easily accessible with other conventional types of lasers1. Recently, efficient Raman lasing in silicon in the near-infrared region has been demonstrated2,3,4, showing great potential for realizing low-cost, compact, room-temperature lasers in the mid-infrared region5,6,7. Such lasers are highly desirable for many applications, ranging from trace-gas sensing, environmental monitoring and biomedical analysis, to industrial process control, and free-space communications8,9. Here we report the first experimental demonstration of cascaded Raman lasing in silicon, opening the path to extending the lasing wavelength from the near- to mid-infrared region. Using a 1,550-nm pump source, we achieve stable, continuous-wave, second-order cascaded lasing at 1,848 nm with an output power exceeding 5 mW. The laser operates in single mode, and the laser linewidth is measured to be <2.5 MHz.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cascaded silicon Raman laser.
Figure 2: Schematic set-up of the cascaded silicon Raman laser experiment.
Figure 3: The first- and second-order silicon Raman laser output power as a function of the waveguide coupled input pump power.
Figure 4: Cascaded silicon Raman laser output spectrum.
Figure 5: Methane and water vapour absorption spectra measured with the cascaded silicon Raman laser.

Similar content being viewed by others

References

  1. Pask, H. M. The design and operation of solid-state Raman lasers. Prog. Quantum Electron. 27, 3–56 (2003).

    Article  ADS  Google Scholar 

  2. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  ADS  Google Scholar 

  3. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  ADS  Google Scholar 

  4. Rong, H. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon. 1, 232–237 (2007).

    Article  ADS  Google Scholar 

  5. Jalali, B. et al. Prospects for silicon mid-IR Raman lasers. IEEE J. Sel. Top. Quant. Electron. 12, 1618–1627 (2006).

    Article  ADS  Google Scholar 

  6. Vermeulen, N., Debaes, C. & Thienpont, H. Modeling mid-infrared continuous-wave silicon-based Raman lasers. Proc. SPIE 6455, 64550U (2007).

    Article  ADS  Google Scholar 

  7. Krause, M., Draheim, R., Renner, H. & Brinkmeyer, E. Cascaded silicon Raman lasers as mid-infrared sources. Electron. Lett. 42, 1224–1226 (2006).

    Article  Google Scholar 

  8. Solid-State Mid-Infrared Laser Sources (eds Sorokina, I. T. & Vodopyanov, K. L.) (Springer, Berlin/Heidelberg, 2003).

    Book  Google Scholar 

  9. Long-Wavelength Infrared Semiconductor Lasers (ed. Choi, H. K.) (Wiley, Hoboken, 2004).

    Book  Google Scholar 

  10. Grubb, S. G. et al. in Optical Amplifiers and Amplifications, Vol. 18, 197–199 (Optical Society of America, Washington, DC, 1995).

    Google Scholar 

  11. Naeini, J. G. & Ahmad, K. Raman fiber laser with two parallel couplers. Opt. Eng. 44, 064203 (2005).

    Article  ADS  Google Scholar 

  12. Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    Article  ADS  Google Scholar 

  13. Min, B. K., Kippenberg, T. J. & Vahala, K. J. Compact, fiber-compatible, cascaded Raman laser. Opt. Lett. 28, 1507–1509 (2003).

    Article  ADS  Google Scholar 

  14. Kippenberg, T. J., Spillane, S. M., Armani, D. K. & Vahala, K. J. Ultralow threshold microcavity Raman laser on a microelectronic chip. Opt. Lett. 29, 1224–1226 (2004).

    Article  ADS  Google Scholar 

  15. Kippenberg, T. J., Spillane, S. M., Min, B. & Vahala, K. J. Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities. IEEE J. Sel. Top. Quant. Electron. 10, 1219–1228 (2004).

    Article  ADS  Google Scholar 

  16. Soref, R. A., Emelett, S. J. & Buchwald, W. R. Silicon waveguided components for the long-wave infrared region. J. Opt. A 8, 840–848 (2006).

    Article  ADS  Google Scholar 

  17. Tittel, F. K., Richter, D. & Fried, A. Mid-infrared laser applications in spectroscopy, in Solid-State Mid-Infrared Laser Sources (eds Sorokina, I. T. & Vodopyanov, K. L. ) 445–510 (Springer, Berlin/Heidelberg, 2003).

    Google Scholar 

  18. Rothman, L. S. et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).

    Article  ADS  Google Scholar 

  19. Fischer, C. & Sigrist, M. W. Mid-IR difference frequency generation, in Solid-State Mid-Infrared Laser Sources (eds Sorokina, I. T. & Vodopyanov, K. L. ) 97–140 (Springer, Berlin/Heidelberg, 2003).

    Google Scholar 

  20. Ebrahimzadeh, M. Mid-infrared ultrafast and continuous-wave optical parametric oscillators, in Solid-State Mid-Infrared Laser Sources (eds, Sorokina, I. T. & Vodopyanov, K. L. ) 179–218 (Springer, Berlin/Heidelberg, 2003).

    Google Scholar 

  21. Sirtori, C. et al. Quantum cascade lasers: The semiconductor solution for lasers in the mid- and far-infrared spectral regions. Phys. Stat. Sol. 203, 3533–3537 (2006).

    Article  ADS  Google Scholar 

  22. Devenson, J., Barate, D., Cathabard, O., Teissier, R. & Baranov A. N. Very short wavelength (λ = 3.1–3.3 µm) quantum cascade lasers. Appl. Phys. Lett. 89, 191115 (2006).

  23. Kaplan, A. Modeling of ring resonators with tunable couplers. IEEE J. Sel. Top. Quant. Electron. 12, 86–95 (2006).

    Article  ADS  Google Scholar 

  24. Liang, T. K. & Tsang, H. K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 2745–2747 (2004).

    Article  ADS  Google Scholar 

  25. Rong, H. et al. Raman gain and nonlinear optical absorption measurement in a low loss silicon waveguide. Appl. Phys. Lett. 85, 2196–2198 (2004).

    Article  ADS  Google Scholar 

  26. Claps, R., Raghunathan, V., Dimitropoulos, D. & Jalali, B. Role of nonlinear absorption on Raman amplification in Silicon waveguides. Opt. Express 12, 2774–2780 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y.-H. Kuo for contributions in ring resonator development; A. Alduino, D. Tran, J.C. Jimenez, N. Izhaky, N. Ziharev and J. Ngo for assistance in device fabrication and sample preparation; W.B. Chapman for helpful suggestions regarding molecular spectroscopy; and R. Jones, A. Liu, J. Doylend, G.T. Reed and J.E. Bowers for technical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisheng Rong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rong, H., Xu, S., Cohen, O. et al. A cascaded silicon Raman laser. Nature Photon 2, 170–174 (2008). https://doi.org/10.1038/nphoton.2008.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing