Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biological synthesis of triangular gold nanoprisms

Abstract

The optoelectronic and physicochemical properties of nanoscale matter are a strong function of particle size. Nanoparticle shape also contributes significantly to modulating their electronic properties. Several shapes ranging from rods to wires to plates to teardrop structures may be obtained by chemical methods; triangular nanoparticles have been synthesized by using a seeded growth process. Here, we report the discovery that the extract from the lemongrass plant, when reacted with aqueous chloroaurate ions, yields a high percentage of thin, flat, single-crystalline gold nanotriangles. The nanotriangles seem to grow by a process involving rapid reduction, assembly and room-temperature sintering of 'liquid-like' spherical gold nanoparticles. The anisotropy in nanoparticle shape results in large near-infrared absorption by the particles, and highly anisotropic electron transport in films of the nanotriangles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UV–vis–NIR kinetics, TEM analysis and AFM images of triangular gold nanoparticles.
Figure 2: TEM analysis and laser light-scattering measurements of gold nanoparticles as a function of time of reaction of aqueous AuCl4 with lemongrass extract.
Figure 3: UV–vis–NIR absorption spectra and corresponding TEM micrographs of AuCl4 reduced by different water-soluble fractions of lemongrass extract.
Figure 4: Physicochemical characterization of gold nanotriangles by FTIR, NMR, ITC and I-V analysis.

Similar content being viewed by others

References

  1. Alivisatos, A.P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996).

    Article  CAS  Google Scholar 

  2. Jin, R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    Article  CAS  Google Scholar 

  3. Aizpura, J. et al. Optical properties of gold nanorings. Phys. Rev. Lett. 90, 057401 (2003).

    Article  Google Scholar 

  4. Moreno-Manas, M. & Pleixats, R. Formation of carbon-carbon bonds under catalysis by transition metal nanoparticles. Acc. Chem. Res. 36, 638–643 (2003).

    Article  CAS  Google Scholar 

  5. Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  6. Han, M., Gao, X., Su, J.Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 19, 631–635 (2001).

    Article  CAS  Google Scholar 

  7. Sun, S., Murray, C.B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  8. Kamat, P.V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729–7744 (2002).

    Article  CAS  Google Scholar 

  9. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  10. Hutchinson, T.O. et al. Templated gold nanowire self-assembly on carbon substrates. Adv. Mater. 13, 1800–1803 (2001).

    Article  CAS  Google Scholar 

  11. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  Google Scholar 

  12. Hao, E., Kelly, K.L., Hupp, J.T. & Schatz, G.C. Synthesis of silver nanodisks using polystyrene mesospheres as templates. J. Am. Chem. Soc. 124, 15182–15183 (2002).

    Article  CAS  Google Scholar 

  13. Sun, Y., Mayers, B. & Xia, Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett. 3, 675–679 (2003).

    Article  CAS  Google Scholar 

  14. Manna, L., Scher, E.C. & Alivisatos, A.P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000).

    Article  CAS  Google Scholar 

  15. Jin, R. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

    Article  CAS  Google Scholar 

  16. Chen, S. & Carroll, D.L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett. 2, 1003–1007 (2002).

    Article  CAS  Google Scholar 

  17. Klaus, T., Joerger, R., Olsson, E. & Granqvist, C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl Acad. Sci. USA 96, 13611–13614 (1999).

    Article  CAS  Google Scholar 

  18. Hosea, M. et al. Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg. Chim. Acta. 123, 161–165 (1986).

    Article  CAS  Google Scholar 

  19. Mukherjee, P. et al. Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Intl Edn Eng. 40, 3585–3588 (2001).

    Article  CAS  Google Scholar 

  20. Ahmad, A. et al. Extra-cellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19, 3550–3553 (2003).

    Article  CAS  Google Scholar 

  21. Brown, S., Sarikaya, M. & Johnson, E. A genetic analysis of crystal growth. J. Mol. Biol. 299, 725–735 (2000).

    Article  CAS  Google Scholar 

  22. Dameron, C.T. et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338, 596–597 (1989).

    Article  CAS  Google Scholar 

  23. Labrenz, M. et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290, 1744–1747 (2000).

    Article  CAS  Google Scholar 

  24. Ahmad, A. et al. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc. 124, 12108–12109 (2002).

    Article  CAS  Google Scholar 

  25. Kröger, N., Deutzmann, R. & Sumper, M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286, 1129–1132 (1999).

    Article  Google Scholar 

  26. Lovley, D.R., Stolz, J.F., Nord, G.L. & Phillips, E.J.P. Anaerobic production of magnetite by a dissimilatory ironreducing microorganism. Nature 330, 252–254 (1987).

    Article  CAS  Google Scholar 

  27. Herman, A., Addadi, L. & Weiner, S. Interactions of sea-urchin skeleton macromolecules with growing calcite crystals—a study of intracrystalline proteins. Nature 331, 546–548 (1988).

    Article  Google Scholar 

  28. Malikova, N., Pastoriza-Santos, I., Schierhorn, M., Kotov, N.A. & Liz-Marzan, L.M. Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions. Langmuir 18, 3694–3697 (2002).

    Article  CAS  Google Scholar 

  29. Ahmad, A. Investigations on the Grassy-Shoot Disease of Lemongrass (Cymbopogon flexuosus) and Characterization of Toxic Metabolites Produced by the Causal Agent Balansia sclerotica. Thesis, Univ. Lucknow (1991).

    Google Scholar 

  30. Vogel, A.I. et al. Textbook of Practical Organic Chemistry 1219 (Addison Wesley Longman, Harlow, England, 1989).

    Google Scholar 

  31. Silverstein, R.M. & Basseler, G.C. Spectrometric Identification of Organic Compounds Ch. 4 (Wiley, New York, 1967).

    Google Scholar 

  32. Li, G. et al. Spherical and planar gold(0) nanoparticles with a rigid gold(I)-anion or a fluid gold(0)-acetone surface. Langmuir 19, 6483–6491 (2003).

    Article  CAS  Google Scholar 

  33. Hirsch, L.R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the TEM (Renu Pasricha) and ITC (K.N. Ganesh) facilities at the National Chemical Laboratory, Pune; S.P. Joshi for separation of the various lemongrass fractions and Vivek Ganvir, Tata Research and Development and Design Centre, Pune, for assistance with light-scattering measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali Sastry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankar, S., Rai, A., Ankamwar, B. et al. Biological synthesis of triangular gold nanoprisms. Nature Mater 3, 482–488 (2004). https://doi.org/10.1038/nmat1152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing