Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3

Abstract

Hearing is conveyed from the auditory receptors, the hair cells in the organ of Corti, to the brain via the spiral ganglion neurons. Damage or loss of either spiral ganglion neurons or hair cells causes hearing impairment. Such hearing disorders are often permanent and can be caused by therapeutic agents, such as aminoglycoside antibiotics and cisplatin, or by aging, loud sounds, infections and mechanical injury1. Brain–derived neurotrophic factor (BDNF) and neurotrophin–3 (NT–3), members of the neurotrophin family of neurotrophic factors that also include nerve growth factor (NCF) and neurotrophln–4/5 (NT–4), are important in development of the neuronal components of the inner ear. We report here that the loss of target innervation and the degeneration of approximately 90% of the adult spiral ganglion neurons caused by aminoglycoside toxicity can be prevented by infusion of the neurotrophic factor, neurotrophin–3 (NT–3) in the membranous labyrinth in guinea pigs. The potency of NT–3 in protecting spiral ganglion neurons from degenerating suggests that neurotrophins may be useful for the treatment of hearing disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Paparella, M.M. & Shumrick, D.A. (eds.) Otolaryngology. 1817 (Saunders, Philadelphia, 1980).

    Google Scholar 

  2. Ernfors, P., Merlio, J.-P. & Persson, H. Cells expressing mRNA for neurotrophins and their receptors during embryonic rat development. Eur. J. Neurosci. 4, 1140–1158 (1992).

    Article  Google Scholar 

  3. Pirvola, U. et al. Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proc. Natl. Acad. Sci. USA 89, 9915–9919 (1992).

    Article  CAS  Google Scholar 

  4. Ylikoski, J. et al. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res. 65, 69–78 (1993).

    Article  CAS  Google Scholar 

  5. Avila, M.A. et al. Brain-derived neurotrophic factor and neurotrophin-3 support survival and neuritogenesis response of developing cochleovestibular ganglion neurons. Dev. Biol. 159, 266–275 (1993).

    Article  Google Scholar 

  6. Davies, A.M., Thoenen, H. & Barde, Y.-A. The response of chick sensory neurons to brain-derived neurotrophic factor. J. Neurosci. 6, 1897–1904 (1986).

    Article  CAS  Google Scholar 

  7. Lefebvre, P.P. et al. Neurotrophins affect survival and neuritogenesis by adult injured auditory neurons in vitro. Neuroreport 5, 865–868 (1994).

    Article  CAS  Google Scholar 

  8. Represa, J. et al. Brain-derived neurotrophic factor and neurotrophin-3 induce cell proliferation in the cochleovestibular ganglion through a glycosyl-phophatidylinositol signaling system. Dev. Biol. 159, 257–265 (1993).

    Article  Google Scholar 

  9. Vazquez, E. et al. Pattern of trkB protein-like immunoreactivity in vivo and the in vitro effects of brain-derived neurotrophic factor (BDNF) on developing cochlear and vestibular neurons. Anat. Embryol. (Berl.) 189, 157–67 (1994).

    Article  CAS  Google Scholar 

  10. Zheng, J.L., Stewart, R.R. & Gao, W.-Q. Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxicity. J. Neurosci. 15, 5079–5087 (1995).

    Article  CAS  Google Scholar 

  11. Ernfors, P., Lee, K-F., Kucera, J. & Jaenisch, R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77, 503–512 (1994).

    Article  CAS  Google Scholar 

  12. Ernfors, P., Van De Water, T.R., Loring, J. & Jaenisch, R. Complementary roles of BDNF and NT-3 in auditory and vestibular development. Neuron 14, 1153–1164 (1995).

    Article  CAS  Google Scholar 

  13. Farinas, I., Jones, K.R., Backus, C., Wang, X.Y. & Reichardt, L.F. Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369, 658–61 (1994).

    Article  CAS  Google Scholar 

  14. Ernfors, P., Lee, K-F. & Jaenisch, R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368, 147–150 (1994).

    Article  CAS  Google Scholar 

  15. Axdorph, U., Laurell, G. & Björkholm, M. Monitoring hearing during treatment of leukemia with special reference to the use of amikacin. J. Intern. Med. 233, 401–407 (1993).

    Article  CAS  Google Scholar 

  16. Bichler, E., Spoendlin, H. & Rauchegger, H. Degeneration of cochlear neurons after amikacin intoxication in the rat. Arch. Otorhinolaryngol. 237, 201–208 (1983).

    Article  CAS  Google Scholar 

  17. Hinojosa, R. & Lerner, S.A. Cochlear neural degeneration without hair cell loss in two patients with aminoglycoside ototoxicity. J. Infect Dis. 156, 449–455 (1987).

    Article  CAS  Google Scholar 

  18. Koitchev, K., Guilhaume, A., Cazals, Y. & Aran, J.-M. Spiral ganglion changes after massive aminoglycoside treatment in the guinea pig. Acta Otolaryngol. 94, 431–438 (1982).

    Article  CAS  Google Scholar 

  19. Kumana, C.R. & Yuen, K.Y. Parenteral aminoglycoside therapy: Selection, administration and monitoring. Drugs 47, 902–913 (1994).

    Article  CAS  Google Scholar 

  20. Matz, G.J. Aminoglycoside cochlear toxicity. Otolaryngol. Clin. North Am. 26, 705–712 (1993).

    CAS  PubMed  Google Scholar 

  21. Lewin, G.R. & Barde, Y.-A. Physiology of the neurotrophins. Annu. Rev. Neurosci. 19, 289–317 (1996).

    Article  CAS  Google Scholar 

  22. Crowley, C. et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76, 1001–1011 (1994).

    Article  CAS  Google Scholar 

  23. Jones, K.R., Farinas, I., Backus, C. & Reichardt, L.F. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76, 989–999 (1994)

    Article  CAS  Google Scholar 

  24. Lewin, G.R. & Mendell, L.M. Nerve growth factor and nociception. Trends Neurosci. 19, 353–359 (1993).

    Article  Google Scholar 

  25. Hory-Lee, F., Russel, M., Lindsay, R.M. & Frank, E. Neurotrophin-3 supports the survival of developing muscle sensory neurons in culture. Proc. Natl. Acad. Sci. USA 90, 2613–2617 (1993).

    Article  CAS  Google Scholar 

  26. Oakley, R.A., Garner, A.S., Largge, T.H. & Frank, E. Muscle sensory neurons require neurotrophin-3 from peripheral tissues during the period of normal cell death. Development 121, 1341–1350 (1995).

    CAS  PubMed  Google Scholar 

  27. Arvidsson, J. et al. Effects of NT-3 and TrkC manipulations on developing Merkel innervation in the mystacial pad of the mouse. Soc. Neurosci. abstract (1995).

  28. Barbacid, M. The trk family of neurotrophin receptors. J. Neurobiol. 25, 1386–1403 (1994).

    Article  CAS  Google Scholar 

  29. Henley, C.M. & Ryback, L.P. Developmental ototoxicity. Otolaryngol. Clin. North Am. 26, 857–871 (1993).

    CAS  PubMed  Google Scholar 

  30. Tran Ba Huy, P. et al. Pharmacokinetics of gentamicin in perilymph and en-dolymph of the rat as determined by radioimmunoassay. J. Infect. Dis. 143, 476–486 (1981).

    Article  CAS  Google Scholar 

  31. Tran Ba Huy, P., Benard, P. & Schacht, J. Kinetics of gentamicin uptake and release in the rat. J. Clin. Invest. 77, 1492–1500 (1986).

    Article  CAS  Google Scholar 

  32. Luo, L., Koutnouyan, H., Baird, A. & Ryan, A.F. Acidic and basic FGF mRNA expression in the adult and developing rat cochlea. Hear. Res. 69, 182–193 (1993).

    Article  CAS  Google Scholar 

  33. Pirvola, U. et al. The site of action of neuronal acidic fibroblast growth factor is the organ of Corti of the rat cochlea. Proc. Natl. Acad. Sci. USA 92, 9269–9273 (1995).

    Article  CAS  Google Scholar 

  34. Thompson, S.W. et al. Cisplatin neuropathy. Cancer 54, 1269–1275 (1984).

    Article  CAS  Google Scholar 

  35. Estrem, S.A., Babin, R.W., Ryu, J.H. & Moore, K.C. cis-Diamminedichloroplatinum (II) ototoxicity in the guinea pig. Otolaryngol. Head Neck Surg. 89, 638–645 (1981).

    Article  CAS  Google Scholar 

  36. Fleischman, R.W., Stadnicki, S.W., Ethier, M.F. & Schaeppi, U. Ototoxicity of ds-dichlorodiammine platinum (II) in guinea pig. Toxicol. Appl. Pharmacol. 33, 320–332 (1975).

    Article  CAS  Google Scholar 

  37. Konishi, T., Gupta, B.N. & Prazma, J. Ototoxicity of ds-dichlorodiammine platinum (II) in guinea pig. J. Otolaryngol. 4, 18–26 (1983).

    Article  CAS  Google Scholar 

  38. Nakai, Y. et al. Ototoxicity of the anticancer drug cisplatin. Acta Otolaryngol. 93, 227–232 (1982).

    Article  CAS  Google Scholar 

  39. Gao, W.Q. et al. Neurotrophin-3 reverses experimental cisplatin-induced peripheral sensory neuropathy. Ann. Neurol. 38, 30–37 (1995).

    Article  CAS  Google Scholar 

  40. Canlon, B., Marklund, K. & Borg, E.J. Measures of auditory brain stem responses distortion product otoacoustic emissions, hair cell loss, and forward masked tuning curves in the waltzing guinea pig. J. Acoust. Soc. Am. 94, 1140–1158 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernfors, P., Li Duan, M., Elshamy, W. et al. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nat Med 2, 463–467 (1996). https://doi.org/10.1038/nm0496-463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0496-463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing