Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural mechanisms of costimulation

Abstract

Recent studies have highlighted the structural requirements for T cell costimulation and have revealed unusual modes of dimerization for the cytolytic T lymphocyte–associated antigen 4 (CTLA-4) costimulatory receptor and its B7 ligands. These distinctive quaternary structures potentially endow both receptor and ligand with bivalent binding properties, which suggests a number of mechanistic features relevant to signaling. These include the potential to form a highly ordered, alternating network of CTLA-4 and B7 homodimers that may represent the organization of these molecules and their associated signaling partners within the immunological synapse. Primary sequence and structural considerations suggest that some aspects of the organizational and mechanistic features associated with the CTLA-4–B7 complexes may extend to other members of the costimulatory receptor-ligand family. An examination of the signaling mechanisms within the costimulatory receptor-ligand family provides an excellent framework to consider the general principles that are relevant to cell surface receptor–mediated signaling events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization and sequences of costimulatory molecules.
Figure 2: Structure of the CTLA-4–B7 complexes.
Figure 3: Extended periodic arrays formed by the CTLA-4–B7 complexes.
Figure 4: Mechanisms of signal transduction by cell surface receptor-ligand engagement.

Similar content being viewed by others

References

  1. Hubbard, S. R. & Till, J. H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373–398 (2000).

    Article  CAS  Google Scholar 

  2. Remy, I., Wilson, I. A. & Michnick, S. W. Erythropoietin receptor activation by a ligand-induced conformation change. Science 283, 990–993 (1999).

    Article  CAS  Google Scholar 

  3. Luo, R. Z., Beniac, D. R., Fernandes, A., Yip, C. C. & Ottensmeyer, F. P. Quaternary structure of the insulin-insulin receptor complex. Science 285, 1077–1080 (1999).

    Article  CAS  Google Scholar 

  4. Schwartz, J. C., Zhang, X., Fedorov, A. A., Nathenson, S. G. & Almo, S. C. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature 410, 604–608 (2001).

    Article  CAS  Google Scholar 

  5. Stamper, C. C. et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 410, 608–611 (2001).

    Article  CAS  Google Scholar 

  6. Siegel, R. M., Chan, F. K., Chun, H. J. & Lenardo, M. J. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nature Immunol. 1, 469–474 (2000).

    Article  CAS  Google Scholar 

  7. Himanen, J. P. et al. Crystal structure of an Eph receptor–ephrin complex. Nature 414, 933–938 (2001).

    Article  CAS  Google Scholar 

  8. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  Google Scholar 

  9. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  Google Scholar 

  10. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  CAS  Google Scholar 

  11. Greenwald, R. J., Boussiotis, V. A., Lorsbach, R. B., Abbas, A. K. & Sharpe, A. H. CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145–155 (2001).

    Article  CAS  Google Scholar 

  12. Schweitzer, A. N. & Sharpe, A. H. Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Th1 cytokine production. J. Immunol. 161, 2762–2771 (1998).

    CAS  PubMed  Google Scholar 

  13. London, C. A., Lodge, M. P. & Abbas, A. K. Functional responses and costimulator dependence of memory CD4+ T cells. J. Immunol. 164, 265–272 (2000).

    Article  CAS  Google Scholar 

  14. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  Google Scholar 

  15. Swallow, M. M., Wallin, J. J. & Sha, W. C. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFα. Immunity 11, 423–432 (1999).

    Article  CAS  Google Scholar 

  16. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  Google Scholar 

  17. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    Article  CAS  Google Scholar 

  18. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  Google Scholar 

  19. Latchman, Y. et al. PD-L2 is a second ligand for PD-I and inhibits T cell activation. Nature Immunol. 2, 261–268 (2001).

    Article  CAS  Google Scholar 

  20. Tseng, S. Y. et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. 193, 839–846 (2001).

    Article  CAS  Google Scholar 

  21. Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  Google Scholar 

  22. Lee, K. H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    Article  CAS  Google Scholar 

  23. van Der Merwe, P. A. & Davis, S. J. Immunology. The immunological synapse–a multitasking system. Science 295, 1479–1480 (2002).

    Article  CAS  Google Scholar 

  24. Chambers, C. A., Kuhns, M. S., Egen, J. G. & Allison, J. P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19, 565–594 (2001).

    Article  CAS  Google Scholar 

  25. Martin, P. J. et al. A 44 kilodalton cell surface homodimer regulates interleukin 2 production by activated human T lymphocytes. J. Immunol. 136, 3282–3287 (1986).

    CAS  PubMed  Google Scholar 

  26. Freeman, G. J. et al. B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J. Immunol. 143, 2714–2722 (1989).

    CAS  PubMed  Google Scholar 

  27. Freeman, G. J. et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262, 909–911 (1993).

    Article  CAS  Google Scholar 

  28. Ikemizu, S. et al. Structure and dimerization of a soluble form of B7-1. Immunity 12, 51–60 (2000).

    Article  CAS  Google Scholar 

  29. Zhang, X., Schwartz, J. C., Almo, S. C. & Nathenson, S. G. Expression, refolding, purification, molecular characterization, crystallization and preliminary x-ray analysis of the receptor binding domain of human B7–2. Protein Expr. Purif. (in the press, 2002).

  30. Metzler, W. J. et al. Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nature Struct. Biol. 4, 527–531 (1997).

    Article  CAS  Google Scholar 

  31. Williams, A. F. & Barclay, A. N. The immunoglobulin superfamily–domains for cell surface recognition. Annu. Rev. Immunol. 6, 381–405 (1988).

    Article  CAS  Google Scholar 

  32. Ostrov, D. A., Shi, W., Schwartz, J. C., Almo, S. C. & Nathenson, S. G. Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science 290, 816–819 (2000).

    Article  CAS  Google Scholar 

  33. Bajorath, J., Peach, R. J. & Linsley, P. S. Immunoglobulin fold characteristics of B7-1 (CD80) and B7-2 (CD86). Protein Sci. 3, 2148–2150 (1994).

    Article  CAS  Google Scholar 

  34. Leahy, D. J., Axel, R. & Hendrickson, W. A. Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 A resolution. Cell 68, 1145–1162 (1992).

    Article  CAS  Google Scholar 

  35. Garcia, K. C. et al. An αβ T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274, 209–219 (1996).

    Article  CAS  Google Scholar 

  36. Kwong, P. D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998).

    Article  CAS  Google Scholar 

  37. Peach, R. J. et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J. Exp. Med. 180, 2049–2058 (1994).

    Article  CAS  Google Scholar 

  38. Peach, R. J. et al. Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. J. Biol. Chem. 270, 21181–21187 (1995).

    Article  CAS  Google Scholar 

  39. Morton, P. A. et al. Differential effects of CTLA-4 substitutions on the binding of human CD80 (B7-1) and CD86 (B7-2). J. Immunol. 156, 1047–1054 (1996).

    CAS  PubMed  Google Scholar 

  40. Lindsten, T. et al. Characterization of CTLA-4 structure and expression on human T cells. J. Immunol. 151, 3489–3499 (1993).

    CAS  PubMed  Google Scholar 

  41. Hirokawa, M., Kuroki, J., Kitabayashi, A. & Miura, A. B. Transmembrane signaling through CD80 (B7-1) induces growth arrest and cell spreading of human B lymphocytes accompanied by protein tyrosine phosphorylation. Immunol. Lett. 50, 95–98 (1996).

    Article  CAS  Google Scholar 

  42. Jeannin, P. et al. CD86 (B7-2) on human B cells. A functional role in proliferation and selective differentiation into IgE- and IgG4-producing cells. J. Biol. Chem. 272, 15613–15619 (1997).

    Article  CAS  Google Scholar 

  43. Suvas, S., Singh, V., Sahdev, S., Vohra, H. & Agrewala, J. N. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphomas. J. Biol. Chem. 277, 7766–7775 (2002).

    Article  CAS  Google Scholar 

  44. Shapiro, L. et al. Structural basis of cell-cell adhesion by cadherins. Nature 374, 327–337 (1995).

    Article  CAS  Google Scholar 

  45. Wulfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  CAS  Google Scholar 

  46. Bromley, S. K. et al. The immunological synapse and CD28-CD80 interactions. Nature Immunol. 2, 1159–1166 (2001).

    Article  CAS  Google Scholar 

  47. Garboczi, D. N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  CAS  Google Scholar 

  48. Wang, J. H. et al. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell 97, 791–803 (1999).

    Article  CAS  Google Scholar 

  49. Wild, M. K. et al. Dependence of T cell antigen recognition on the dimensions of an accessory receptor-ligand complex. J. Exp. Med. 190, 31–41 (1999).

    Article  CAS  Google Scholar 

  50. Moody, A. M. et al. Developmentally regulated glycosylation of the CD8αβ coreceptor stalk modulates ligand binding. Cell 107, 501–512 (2001).

    Article  CAS  Google Scholar 

  51. Cunningham, B. C. et al. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254, 821–825 (1991).

    Article  CAS  Google Scholar 

  52. Wiesmann, C. et al. Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91, 695–704 (1997).

    Article  CAS  Google Scholar 

  53. Schlessinger, J. et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6, 743–750 (2000).

    Article  CAS  Google Scholar 

  54. Livnah, O. et al. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283, 987–990 (1999).

    Article  CAS  Google Scholar 

  55. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N- glycosylation. Nature 409, 733–739 (2001).

    Article  CAS  Google Scholar 

  56. Khan, A. A., Bose, C., Yam, L. S., Soloski, M. J. & Rupp, F. Physiological regulation of the immunological synapse by agrin. Science 292, 1681–1686 (2001).

    Article  CAS  Google Scholar 

  57. Wallach, D. et al. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17, 331–367 (1999).

    Article  CAS  Google Scholar 

  58. Chan, F. K. et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354 (2000).

    Article  CAS  Google Scholar 

  59. Papoff, G. et al. Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J. Biol. Chem. 274, 38241–38250 (1999).

    Article  CAS  Google Scholar 

  60. Banner, D. W. et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: implications for TNF receptor activation. Cell 73, 431–445 (1993).

    Article  CAS  Google Scholar 

  61. Hymowitz, S. G. et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol. Cell 4, 563–571 (1999).

    Article  CAS  Google Scholar 

  62. Mongkolsapaya, J. et al. Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nature Struct. Biol. 6, 1048–1053 (1999).

    Article  CAS  Google Scholar 

  63. Turner, H. & Kinet, J. P. Signalling through the high-affinity IgE receptor FcɛRI. Nature 402, 24–30 (1999).

    Article  Google Scholar 

  64. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  65. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  66. Barton, G. J. Protein multiple sequence alignment and flexible pattern matching. Meth. Enzymol. 183, 403–428 (1990).

    Article  CAS  Google Scholar 

  67. Evans, S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 127–138 (1993).

    Article  Google Scholar 

  68. Schneider, H., Prasad, K. V., Shoelson, S. E. & Rudd, C. E. CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J. Exp. Med. 181, 351–355 (1995).

    Article  CAS  Google Scholar 

  69. Chikuma, S., Murakami, M., Tanaka, K. & Uede, T. Janus kinase 2 is associated with a box 1-like motif and phosphorylates a critical tyrosine residue in the cytoplasmic region of cytotoxic T lymphocyte associated molecule-4. J. Cell. Biochem. 78, 241–250 (2000).

    Article  CAS  Google Scholar 

  70. Chuang, E. et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13, 313–322 (2000).

    Article  CAS  Google Scholar 

  71. Marengere, L. E. et al. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272, 1170–1173 (1996).

    Article  CAS  Google Scholar 

  72. Lee, K. M. et al. Molecular basis of T cell inactivation by CTLA-4. Science 282, 2263–2266 (1998).

    Article  CAS  Google Scholar 

  73. Zhang, Y. & Allison, J. P. Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc. Natl. Acad. Sci. USA 94, 9273–9278 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bresnick, T. DiLorenzo and M. Scharf for helpful comments. Supported by grants from the National Institutes of Health (NIH) to S. C. A. and S. G. N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Almo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, JC., Zhang, X., Nathenson, S. et al. Structural mechanisms of costimulation. Nat Immunol 3, 427–434 (2002). https://doi.org/10.1038/ni0502-427

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0502-427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing