Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The synthetic genetic interaction spectrum of essential genes

Abstract

The nature of synthetic genetic interactions involving essential genes (those required for viability) has not been previously examined in a broad and unbiased manner. We crossed yeast strains carrying promoter-replacement alleles for more than half of all essential yeast genes1 to a panel of 30 different mutants with defects in diverse cellular processes. The resulting genetic network is biased toward interactions between functionally related genes, enabling identification of a previously uncharacterized essential gene (PGA1) required for specific functions of the endoplasmic reticulum. But there are also many interactions between genes with dissimilar functions, suggesting that individual essential genes are required for buffering many cellular processes. The most notable feature of the essential synthetic genetic network is that it has an interaction density five times that of nonessential synthetic genetic networks2,3, indicating that most yeast genetic interactions involve at least one essential gene.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Matrix display of SGA data.
Figure 2: Allele specificity of essential gene interactions.
Figure 3: Network diagram summarizing 229 synthetic genetic interactions between nine different queries (sec1-1ts, sec7-1ts, sec15-1ts, sec18-1ts, exo84-102ts, rfc5-1ts, lrp1-Δ, rps17a-Δ and slt2-Δ) and 147 strains in the TetO7-promoter array.
Figure 4: Analysis of DNA replication in the rfc5-1 mutants.
Figure 5: PGA1 (also known as YNL158W) is required for normal protein processing of ALP and Gas1p.
Figure 6: Characteristics of the essential SGA network.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Mnaimneh, S. et al. Exploration of essential gene functions via titratable promoter alleles. Cell 118, 31–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Hartman, J.L., Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science 291, 1001–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Hartwell, L. Genetics. Robust interactions. Science 303, 774–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Finger, F.P. & Novick, P. Synthetic interactions of the post-Golgi sec mutations of Saccharomyces cerevisiae. Genetics 156, 943–951 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Breitkreutz, B.J., Stark, C. & Tyers, M. The GRID: the General Repository for Interaction Datasets. Genome Biol. 4, R23 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fien, K. & Stillman, B. Identification of replication factor C from Saccharomyces cerevisiae: a component of the leading-strand DNA replication complex. Mol. Cell. Biol. 12, 155–163 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kolodner, R.D. & Marsischky, G.T. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Mayer, M.L., Gygi, S.P., Aebersold, R. & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7, 959–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Peng, W.T. et al. A panoramic view of yeast noncoding RNA processing. Cell 113, 919–933 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Mitchell, P. et al. Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol. Cell. Biol. 23, 6982–6992 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jung, U.S. & Levin, D.E. Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol. Microbiol. 34, 1049–1057 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Christie, K.R. et al. Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res. 32, D311–D314 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujioka, Y., Kimata, Y., Nomaguchi, K., Watanabe, K. & Kohno, K. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5–SMC6 complex involved in DNA repair. J. Biol. Chem. 277, 21585–21591 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Hennessy, K.M., Lee, A., Chen, E. & Botstein, D. A group of interacting yeast DNA replication genes. Genes Dev. 5, 958–969 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Desany, B.A., Alcasabas, A.A., Bachant, J.B. & Elledge, S.J. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956–2970 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Hazbun, T.R. et al. Assigning function to yeast proteins by integration of technologies. Mol. Cell 12, 1353–1365 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Avaro, S., Belgareh-Touze, N., Sibella-Arguelles, C., Volland, C. & Haguenauer-Tsapis, R. Mutants defective in secretory/vacuolar pathways in the EUROFAN collection of yeast disruptants. Yeast 19, 351–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Belgareh-Touze, N. et al. Yeast functional analysis: identification of two essential genes involved in ER to Golgi trafficking. Traffic 4, 607–617 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Popolo, L. & Vai, M. The Gas1 glycoprotein, a putative wall polymer cross-linker. Biochim. Biophys. Acta 1426, 385–400 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Cowles, C.R., Odorizzi, G., Payne, G.S. & Emr, S.D. The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 91, 109–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Stepp, J.D., Huang, K. & Lemmon, S.K. The yeast adaptor protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternate pathway to the vacuole. J. Cell Biol. 139, 1761–1774 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Phillips, P.C. & Johnson, N.A. The population genetics of synthetic lethals. Genetics 150, 449–458 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kile, B.T. et al. Functional genetic analysis of mouse chromosome 11. Nature 425, 81–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Goddijn, M. & Leschot, N.J. Genetic aspects of miscarriage. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol. 14, 855–865 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Bader for assistance with the comparison of our genetic interactions to known genetic and protein-protein interactions; A. Tong for assistance in SGA query selection and experiments, critical evaluation of the manuscript and help with network visualization; H. Ding for assistance with data analysis; and O. Ryan, H. Lu, M. McCabe, O. Morozova and W. Siu for technical contributions. This work was funded by grants from Canadian Institutes of Health Research, Genome Canada and the Ontario Genomics Institute to T.R.H., C.B., B.J.A. and G.W.B. A.P.D. was funded by a C.H. Best Postdoctoral Fellowship and J.H. was funded by an Estate of Betty Irene West/Canadian Institutes of Health Research doctoral research award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy R Hughes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Query strains used in this study. (PDF 56 kb)

Supplementary Methods (PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davierwala, A., Haynes, J., Li, Z. et al. The synthetic genetic interaction spectrum of essential genes. Nat Genet 37, 1147–1152 (2005). https://doi.org/10.1038/ng1640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1640

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing