Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence

Abstract

p53 limits the proliferation of primary diploid fibroblasts by inducing a state of growth arrest named replicative senescence — a process which protects against oncogenic transformation and requires integrity of the p53 tumour suppressor pathway1,2,3. However, little is known about the downstream target genes of p53 in this growth-limiting response. Here, we report that suppression of the p53 target gene encoding plasminogen activator inhibitor-1 (PAI-1) by RNA interference (RNAi) leads to escape from replicative senescence both in primary mouse embryo fibroblasts and primary human BJ fibroblasts. PAI-1 knockdown results in sustained activation of the PI(3)K–PKB–GSK3β pathway and nuclear retention of cyclin D1, consistent with a role for PAI-1 in regulating growth factor signalling. In agreement with this, we find that the PI(3)K–PKB–GSK3β–cyclin D1 pathway is also causally involved in cellular senescence. Conversely, ectopic expression of PAI-1 in proliferating p53-deficient murine or human fibroblasts induces a phenotype displaying all the hallmarks of replicative senescence. Our data indicate that PAI-1 is not merely a marker of senescence, but is both necessary and sufficient for the induction of replicative senescence downstream of p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PAI-1 loss induces senescence-bypass in primary mouse fibroblasts.
Figure 2: MEFs reduce PKB activation and exclude cyclin D1 from the nucleus during replicative senescence.
Figure 3: Sustained PI(3)K–PKB signalling or nuclear retention of cyclin D1 induces bypass of senescence.
Figure 4: PAI-1 expression is sufficient for the induction of replicative senescence.
Figure 5: PAI-1 is necessary and sufficient for senescence in human BJ fibroblasts.

Similar content being viewed by others

References

  1. Lundberg, A. S., Hahn, W. C., Gupta, P. & Weinberg, R. A. Genes involved in senescence and immortalization. Curr. Opin. Cell Biol. 12, 705–709 (2000).

    Article  CAS  Google Scholar 

  2. Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002).

    Article  CAS  Google Scholar 

  3. Massague, J. G1 cell-cycle control and cancer. Nature 432, 298–306 (2004).

    Article  CAS  Google Scholar 

  4. Pantoja, C. & Serrano, M. Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18, 4974–4982 (1999).

    Article  CAS  Google Scholar 

  5. Kunz, C., Pebler, S., Otte, J. & von der Ahe, D. Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res. 23, 3710–3717 (1995).

    Article  CAS  Google Scholar 

  6. Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981–993 (2000).

    Article  CAS  Google Scholar 

  7. Mu, X. C. & Higgins, P. J. Differential growth state-dependent regulation of plasminogen activator inhibitor type-1 expression in senescent IMR-90 human diploid fibroblasts. J. Cell Physiol. 165, 647–657 (1995).

    Article  CAS  Google Scholar 

  8. Martens, J. W. et al. Aging of stromal-derived human breast fibroblasts might contribute to breast cancer progression. Thromb. Haemost. 89, 393–404 (2003).

    Article  CAS  Google Scholar 

  9. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  10. De Petro, G., Copeta, A. & Barlati, S. Urokinase-type and tissue-type plasminogen activators as growth factors of human fibroblasts. Exp. Cell Res. 213, 286–294 (1994).

    Article  CAS  Google Scholar 

  11. Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    Article  CAS  Google Scholar 

  12. Andreasen, P. A., Egelund, R. & Petersen, H. H. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol. Life Sci. 57, 25–40 (2000).

    Article  CAS  Google Scholar 

  13. Choong, P. F. & Nadesapillai, A. P. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin. Orthop. 415, S46–S58 (2003).

    Article  Google Scholar 

  14. Quelle, D. E. et al. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene 11, 635–645 (1995).

    CAS  PubMed  Google Scholar 

  15. Linardopoulos, S. et al. Deletion and altered regulation of p16INK4a and p15INK4b in undifferentiated mouse skin tumors. Cancer Res. 55, 5168–5172 (1995).

    CAS  PubMed  Google Scholar 

  16. Sherr, C. J. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2991 (1998).

    Article  CAS  Google Scholar 

  17. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  Google Scholar 

  18. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  19. Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499–3511 (1998).

    Article  CAS  Google Scholar 

  20. Chandrasekar, N. et al. Downregulation of uPA inhibits migration and PI3k/Akt signaling in glioblastoma cells. Oncogene 22, 392–400 (2003).

    Article  CAS  Google Scholar 

  21. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  Google Scholar 

  22. Parsons, R. Human cancer, PTEN and the PI-3 kinase pathway. Semin. Cell Dev. Biol. 15, 171–176 (2004).

    Article  CAS  Google Scholar 

  23. Radu, A., Neubauer, V., Akagi, T., Hanafusa, H. & Georgescu, M. M. PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol. Cell Biol. 23, 6139–6149 (2003).

    Article  CAS  Google Scholar 

  24. Dannenberg, J. H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051–3064 (2000).

    Article  CAS  Google Scholar 

  25. Sage, J. et al. Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev. 14, 3037–3050 (2000).

    Article  CAS  Google Scholar 

  26. Rowland, B. D. et al. E2F transcriptional repressor complexes are critical downstream targets of p19(ARF)/p53-induced proliferative arrest. Cancer Cell 2, 55–65 (2002).

    Article  CAS  Google Scholar 

  27. West, M. D., Shay, J. W., Wright, W. E. & Linskens, M. H. Altered expression of plasminogen activator and plasminogen activator inhibitor during cellular senescence. Exp. Gerontol. 31, 175–193 (1996).

    Article  CAS  Google Scholar 

  28. Brown, J. P., Wei, W. & Sedivy, J. M. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831–834 (1997).

    Article  CAS  Google Scholar 

  29. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  Google Scholar 

  30. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    Article  CAS  Google Scholar 

  31. Tuveson, D. A. et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    Article  CAS  Google Scholar 

  32. Prendergast, G. C., Diamond, L. E., Dahl, D. & Cole, M. D. The c-myc-regulated gene mrl encodes plasminogen activator inhibitor 1. Mol. Cell Biol. 10, 1265–1269 (1990).

    Article  CAS  Google Scholar 

  33. Parfyonova, Y. V., Plekhanova, O. S. & Tkachuk, V. A. Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry (Mosc) 67, 119–134 (2002).

    Article  CAS  Google Scholar 

  34. Bissell, M. J. et al. Tissue structure, nuclear organization and gene expression in normal and malignant breast. Cancer Res. 59, S1757–S1763 (1999).

    Google Scholar 

  35. Usher, P. A. et al. Expression of urokinase plasminogen activator, its receptor and type-1 inhibitor in malignant and benign prostate tissue. Int. J. Cancer 113, 870–880 (2005).

    Article  CAS  Google Scholar 

  36. Frandsen, T. L. et al. Direct evidence of the importance of stromal urokinase plasminogen activator (uPA) in the growth of an experimental human breast cancer using a combined uPA gene-disrupted and immunodeficient xenograft model. Cancer Res. 61, 532–537 (2001).

    CAS  PubMed  Google Scholar 

  37. Almholt, K. et al. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int. J. Cancer 113, 525–532 (2005).

    Article  CAS  Google Scholar 

  38. Tuxhorn, J. A., Ayala, G. E. & Rowley, D. R. Reactive stroma in prostate cancer progression. J. Urol. 166, 2472–2483 (2001).

    Article  CAS  Google Scholar 

  39. Mueller, M. M. & Fusenig, N. E. Friends or foes — bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer 4, 839–849 (2004).

    Article  CAS  Google Scholar 

  40. Dirac, A. M. & Bernards, R. Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J. Biol. Chem. 278, 11731–11734 (2003).

    Article  CAS  Google Scholar 

  41. Yu, J. Y., Taylor, J., DeRuiter, S. L., Vojtek, A. B. & Turner, D. L. Simultaneous inhibition of GSK3α and GSK3β using hairpin siRNA expression vectors. Mol. Ther. 7, 228–236 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Visser for technical assistance, K. Berns, M. Hijmans, A. Dirac, T. Brummelkamp, R. Agami, R. van der Kammen, J. Collard and F. Scheeren for retroviral constructs, B. Weigelt for help with QRT–PCR, F. Foijer for retinoblastoma family deficient MEFs, L. Oomen and L. Brocks for help with microscopy, and R. Beijersbergen and D. Peeper for helpful discussions. This work was supported by a grant from the Dutch Cancer Society to R.B. and a grant from the National Institutes of Health (NIH; GM57242) to P.H.

Author information

Authors and Affiliations

Authors

Contributions

R.K. and R.B. conceived and designed the experiments. R.K. performed the experiments. P.H. contributed materials. R.K. and R.B. analysed the data. R.K. and R.B. wrote the paper.

Corresponding author

Correspondence to René Bernards.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 9967 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortlever, R., Higgins, P. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8, 877–884 (2006). https://doi.org/10.1038/ncb1448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing