Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Cooperative roles for emmprin and LYVE-1 in the regulation of chemoresistance for primary effusion lymphoma

Abstract

The Kaposi's sarcoma-associated herpesvirus is the causative agent of primary effusion lymphoma (PEL), for which cytotoxic chemotherapy represents the standard of care. The high mortality associated with PEL may be explained in part by resistance of these tumors to chemotherapy. The membrane-bound glycoprotein emmprin (CD147) enhances chemoresistance in tumors through effects on transporter expression, trafficking and interactions. Interactions between hyaluronan and hyaluronan receptors on the cell surface also facilitate emmprin-mediated chemoresistance. Whether emmprin or hyaluronan-receptor interactions regulate chemotherapeutic resistance for virus-associated malignancies is unknown. Using human PEL tumor cells, we found that PEL sensitivity to chemotherapy is directly proportional to expression of emmprin, the lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) and a drug transporter known as the breast cancer resistance protein/ABCG2 (BCRP), and that emmprin, LYVE-1 and BCRP interact with each other and colocalize on the PEL cell surface. In addition, we found that emmprin induces chemoresistance in PEL cells through upregulation of BCRP expression, and RNA interference targeting of emmprin, LYVE-1 or BCRP enhances PEL cell apoptosis induced by chemotherapy. Finally, disruption of hyaluronan-receptor interactions using small hyaluronan oligosaccharides reduces expression of emmprin and BCRP while sensitizing PEL cells to chemotherapy. Collectively, these data support interdependent roles for emmprin, LYVE-1 and BCRP in chemotherapeutic resistance for PEL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM . Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995; 332: 1186–1191.

    Article  CAS  Google Scholar 

  2. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 1995; 86: 1276–1280.

    CAS  PubMed  Google Scholar 

  3. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 1994; 266: 1865–1869.

    Article  CAS  Google Scholar 

  4. Petre CE, Sin SH, Dittmer DP . Functional p53 signaling in Kaposi's sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 2007; 81: 1912–1922.

    Article  CAS  Google Scholar 

  5. Simonelli C, Spina M, Cinelli R, Talamini R, Tedeschi R, Gloghini A et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol 2003; 21: 3948–3954.

    Article  Google Scholar 

  6. Boulanger E, Gerard L, Gabarre J, Molina JM, Rapp C, Abino JF et al. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol 2005; 23: 4372–4380.

    Article  Google Scholar 

  7. Chen YB, Rahemtullah A, Hochberg E . Primary effusion lymphoma. Oncologist 2007; 12: 569–576.

    Article  Google Scholar 

  8. Oksenhendler E, Clauvel JP, Jouveshomme S, Davi F, Mansour G . Complete remission of a primary effusion lymphoma with antiretroviral therapy. Am J Hematol 1998; 57: 266.

    Article  CAS  Google Scholar 

  9. Hocqueloux L, Agbalika F, Oksenhendler E, Molina JM . Long-term remission of an AIDS-related primary effusion lymphoma with antiviral therapy. AIDS 2001; 15: 280–282.

    Article  CAS  Google Scholar 

  10. Lim ST, Rubin N, Said J, Levine AM . Primary effusion lymphoma: successful treatment with highly active antiretroviral therapy and rituximab. Ann Hematol 2005; 84: 551–552.

    Article  Google Scholar 

  11. Munoz-Fontela C, Marcos-Villar L, Hernandez F, Gallego P, Rodriguez E, Arroyo J et al. Induction of paclitaxel resistance by the Kaposi's sarcoma-associated herpesvirus latent protein LANA2. J Virol 2008; 82: 1518–1525.

    Article  CAS  Google Scholar 

  12. Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H et al. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 1995; 55: 434–439.

    CAS  PubMed  Google Scholar 

  13. Guo H, Zucker S, Gordon MK, Toole BP, Biswas C . Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem 1997; 272: 24–27.

    Article  CAS  Google Scholar 

  14. Zucker S, Hymowitz M, Rollo EE, Mann R, Conner CE, Cao J et al. Tumorigenic potential of extracellular matrix metalloproteinase inducer. Am J Pathol 2001; 158: 1921–1928.

    Article  CAS  Google Scholar 

  15. Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP . CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 2000; 19: 3896–3904.

    Article  CAS  Google Scholar 

  16. Gallagher SM, Castorino JJ, Wang D, Philp NJ . Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res 2007; 67: 4182–4189.

    Article  CAS  Google Scholar 

  17. Slomiany MG, Grass GD, Robertson AD, Yang XY, Maria BL, Beeson C et al. Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer Res 2009; 69: 1293–1301.

    Article  CAS  Google Scholar 

  18. Slomiany MG, Dai L, Tolliver LB, Grass GD, Zeng Y, Toole BP . Inhibition of functional hyaluronan-CD44 interactions in CD133-positive primary human ovarian carcinoma cells by small hyaluronan oligosaccharides. Clin Cancer Res 2009; 15: 7593–7601.

    Article  CAS  Google Scholar 

  19. Wang WJ, Li QQ, Xu JD, Cao XX, Li HX, Tang F et al. Interaction between CD147 and P-glycoprotein and their regulation by ubiquitination in breast cancer cells. Chemotherapy 2008; 54: 291–301.

    Article  CAS  Google Scholar 

  20. Marieb EA, Zoltan-Jones A, Li R, Misra S, Ghatak S, Cao J et al. Emmprin promotes anchorage-independent growth in human mammary carcinoma cells by stimulating hyaluronan production. Cancer Res 2004; 64: 1229–1232.

    Article  CAS  Google Scholar 

  21. Slomiany MG, Dai L, Bomar PA, Knackstedt TJ, Kranc DA, Tolliver L et al. Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-CD44 interactions with small hyaluronan oligosaccharides. Cancer Res 2009; 69: 4992–4998.

    Article  CAS  Google Scholar 

  22. Gilg AG, Tye SL, Tolliver LB, Wheeler WG, Visconti RP, Duncan JD et al. Targeting hyaluronan interactions in malignant gliomas and their drug-resistant multipotent progenitors. Clin Cancer Res 2008; 14: 1804–1813.

    Article  CAS  Google Scholar 

  23. Misra S, Ghatak S, Zoltan-Jones A, Toole BP . Regulation of multidrug resistance in cancer cells by hyaluronan. J Biol Chem 2003; 278: 25285–25288.

    Article  CAS  Google Scholar 

  24. Misra S, Ghatak S, Toole BP . Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2. J Biol Chem 2005; 280: 20310–20315.

    Article  CAS  Google Scholar 

  25. Torre C, Wang SJ, Xia W, Bourguignon LY . Reduction of hyaluronan-CD44-mediated growth, migration, and cisplatin resistance in head and neck cancer due to inhibition of Rho kinase and PI-3 kinase signaling. Arch Otolaryngol Head Neck Surg 2010; 136: 493–501.

    Article  Google Scholar 

  26. Lesley J, Hascall VC, Tammi M, Hyman R . Hyaluronan binding by cell surface CD44. J Biol Chem 2000; 275: 26967–26975.

    CAS  PubMed  Google Scholar 

  27. Underhill CB, Chi-Rosso G, Toole BP . Effects of detergent solubilization on the hyaluronate-binding protein from membranes of simian virus 40-transformed 3T3 cells. J Biol Chem 1983; 258: 8086–8091.

    CAS  PubMed  Google Scholar 

  28. Cordo Russo RI, Garcia MG, Alaniz L, Blanco G, Alvarez E, Hajos SE . Hyaluronan oligosaccharides sensitize lymphoma resistant cell lines to vincristine by modulating P-glycoprotein activity and PI3K/Akt pathway. Int J Cancer 2008; 122: 1012–1018.

    Article  Google Scholar 

  29. Jackson DG . Immunological functions of hyaluronan and its receptors in the lymphatics. Immunol Rev 2009; 230: 216–231.

    Article  CAS  Google Scholar 

  30. Carroll PA, Brazeau E, Lagunoff M . Kaposi's sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation. Virology 2004; 328: 7–18.

    Article  CAS  Google Scholar 

  31. An FQ, Folarin HM, Compitello N, Roth J, Gerson SL, McCrae KR et al. Long-term-infected telomerase-immortalized endothelial cells: a model for Kaposi's sarcoma-associated herpesvirus latency in vitro and in vivo. J Virol 2006; 80: 4833–4846.

    Article  CAS  Google Scholar 

  32. Pyakurel P, Pak F, Mwakigonja AR, Kaaya E, Heiden T, Biberfeld P . Lymphatic and vascular origin of Kaposi's sarcoma spindle cells during tumor development. Int J Cancer 2006; 119: 1262–1267.

    Article  CAS  Google Scholar 

  33. Boshoff C, Gao SJ, Healy LE, Matthews S, Thomas AJ, Coignet L et al. Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in Nod/SCID mice. Blood 1998; 91: 1671–1679.

    CAS  PubMed  Google Scholar 

  34. Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R, Branch D et al. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog 2010; 6: e1000742.

    Article  Google Scholar 

  35. Mellor HR, Callaghan R . Accumulation and distribution of doxorubicin in tumour spheroids: the influence of acidity and expression of P-glycoprotein. Cancer Chemother Pharmacol 2011; e-pub ahead of print 15 March 2011.

  36. Li R, Huang L, Guo H, Toole BP . Basigin (murine EMMPRIN) stimulates matrix metalloproteinase production by fibroblasts. J Cell Physiol 2001; 186: 371–379.

    Article  CAS  Google Scholar 

  37. Gordon LB, Harten IA, Calabro A, Sugumaran G, Csoka AB, Brown WT et al. Hyaluronan is not elevated in urine or serum in Hutchinson-Gilford Progeria Syndrome. Hum Genet 2003; 113: 178–187.

    CAS  PubMed  Google Scholar 

  38. Tang W, Chang SB, Hemler ME . Links between CD147 function, glycosylation, and caveolin-1. Mol Biol Cell 2004; 15: 4043–4050.

    Article  CAS  Google Scholar 

  39. Belton Jr RJ, Chen L, Mesquita FS, Nowak RA . Basigin-2 is a cell surface receptor for soluble basigin ligand. J Biol Chem 2008; 283: 17805–17814.

    Article  CAS  Google Scholar 

  40. Wang YF, Chen CY, Chung SF, Chiou YH, Lo HR . Involvement of oxidative stress and caspase activation in paclitaxel-induced apoptosis of primary effusion lymphoma cells. Cancer Chemother Pharmacol 2004; 54: 322–330.

    Article  CAS  Google Scholar 

  41. Alaniz L, Garcia MG, Gallo-Rodriguez C, Agusti R, Sterin-Speziale N, Hajos SE et al. Hyaluronan oligosaccharides induce cell death through PI3-K/Akt pathway independently of NF-kappaB transcription factor. Glycobiology 2006; 16: 359–367.

    Article  CAS  Google Scholar 

  42. Bourguignon LY, Xia W, Wong G . Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J Biol Chem 2009; 284: 2657–2671.

    Article  CAS  Google Scholar 

  43. Doyle LA, Ross DD . Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22: 7340–7358.

    Article  Google Scholar 

  44. Venkatesan B, Valente AJ, Prabhu SD, Shanmugam P, Delafontaine P, Chandrasekar B . EMMPRIN activates multiple transcription factors in cardiomyocytes, and induces interleukin-18 expression via Rac1-dependent PI3K/Akt/IKK/NF-kappaB andMKK7/JNK/AP-1 signaling. J Mol Cell Cardiol 2010; 49: 655–663.

    Article  CAS  Google Scholar 

  45. Tang Y, Nakada MT, Rafferty P, Laraio J, McCabe FL, Millar H et al. Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Mol Cancer Res 2006; 4: 371–377.

    Article  CAS  Google Scholar 

  46. Huang Z, Wang C, Wei L, Wang J, Fan Y, Wang L et al. Resveratrol inhibits EMMPRIN expression via P38 and ERK1/2 pathways in PMA-induced THP-1 cells. Biochem Biophys Res Commun 2008; 374: 517–521.

    Article  CAS  Google Scholar 

  47. Saban MR, Memet S, Jackson DG, Ash J, Roig AA, Israel A et al. Visualization of lymphatic vessels through NF-kappaB activity. Blood 2004; 104: 3228–3230.

    Article  CAS  Google Scholar 

  48. Benjamin JT, Carver BJ, Plosa EJ, Yamamoto Y, Miller JD, Liu JH et al. NF-kappaB activation limits airway branching through inhibition of Sp1-mediated fibroblast growth factor-10 expression. J Immunol 2010; 185: 4896–4903.

    Article  CAS  Google Scholar 

  49. Stein B, Cogswell PC, Baldwin Jr AS . Functional and physical associations between NF-kappa B and C/EBP family members: a Rel domain-bZIP interaction. Mol Cell Biol 1993; 13: 3964–3974.

    Article  CAS  Google Scholar 

  50. Qin Z, Dai L, Slomiany MG, Toole BP, Parsons C . Direct activation of emmprin and associated pathogenesis by an oncogenic herpesvirus. Cancer Res 2010; 70: 3884–3889.

    Article  CAS  Google Scholar 

  51. Kong LM, Liao CG, Fei F, Guo X, Xing JL, Chen ZN . Transcription factor Sp1 regulates expression of cancer-associated molecule CD147 in human lung cancer. Cancer Sci 2010; 101: 1463–1470.

    Article  CAS  Google Scholar 

  52. Verma SC, Borah S, Robertson ES . Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus up-regulates transcription of human telomerase reverse transcriptase promoter through interaction with transcription factor Sp1. J Virol 2004; 78: 10348–10359.

    Article  CAS  Google Scholar 

  53. Toole BP, Slomiany MG . Hyaluronan, CD44 and Emmprin: partners in cancer cell chemoresistance. Drug Resist Updat 2008; 11: 110–121.

    Article  CAS  Google Scholar 

  54. Ghatak S, Misra S, Toole BP . Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J Biol Chem 2002; 277: 38013–38020.

    Article  CAS  Google Scholar 

  55. Ghatak S, Misra S, Toole BP . Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 2005; 280: 8875–8883.

    Article  CAS  Google Scholar 

  56. Zhou B, Weigel JA, Fauss L, Weigel PH . Identification of the hyaluronan receptor for endocytosis (HARE). J Biol Chem 2000; 275: 37733–37741.

    Article  CAS  Google Scholar 

  57. Hamilton SR, Fard SF, Paiwand FF, Tolg C, Veiseh M, Wang C et al. The hyaluronan receptors CD44 and Rhamm (CD168) form complexes with ERK1,2 that sustain high basal motility in breast cancer cells. J Biol Chem 2007; 282: 16667–16680.

    Article  CAS  Google Scholar 

  58. Keshet Y, Seger R . The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661: 3–38.

    Article  CAS  Google Scholar 

  59. Stiles BL . PI-3-K and AKT: onto the mitochondria. Adv Drug Deliv Rev 2009; 61: 1276–1282.

    Article  CAS  Google Scholar 

  60. Kawauchi K, Ogasawara T, Yasuyama M, Otsuka K, Yamada O . The PI3K/Akt pathway as a target in the treatment of hematologic malignancies. Anticancer Agents Med Chem 2009; 9: 550–559.

    Article  CAS  Google Scholar 

  61. Shen HM, Tergaonkar V . NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis 2009; 14: 348–363.

    Article  CAS  Google Scholar 

  62. Ford PW, Bryan BA, Dyson OF, Weidner DA, Chintalgattu V, Akula SM . Raf/MEK/ERK signalling triggers reactivation of Kaposi's sarcoma-associated herpesvirus latency. J Gen Virol 2006; 87 (Part 5): 1139–1144.

    Article  CAS  Google Scholar 

  63. Tomlinson CC, Damania B . The K1 protein of Kaposi's sarcoma-associated herpesvirus activates the Akt signaling pathway. J Virol 2004; 78: 1918–1927.

    Article  CAS  Google Scholar 

  64. Cannon ML, Cesarman E . The KSHV G protein-coupled receptor signals via multiple pathways to induce transcription factor activation in primary effusion lymphoma cells. Oncogene 2004; 23: 514–523.

    Article  CAS  Google Scholar 

  65. Guasparri I, Keller SA, Cesarman E . KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med 2004; 199: 993–1003.

    Article  CAS  Google Scholar 

  66. Sin SH, Roy D, Wang L, Staudt MR, Fakhari FD, Patel DD et al. Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling. Blood 2007; 109: 2165–2173.

    Article  CAS  Google Scholar 

  67. Uddin S, Hussain AR, Al-Hussein KA, Manogaran PS, Wickrema A, Gutierrez MI et al. Inhibition of phosphatidylinositol 3′-kinase/AKT signaling promotes apoptosis of primary effusion lymphoma cells. Clin Cancer Res 2005; 11: 3102–3108.

    Article  CAS  Google Scholar 

  68. Takahashi-Makise N, Suzu S, Hiyoshi M, Ohsugi T, Katano H, Umezawa K et al. Biscoclaurine alkaloid cepharanthine inhibits the growth of primary effusion lymphoma in vitro and in vivo and induces apoptosis via suppression of the NF-kappaB pathway. Int J Cancer 2009; 125: 1464–1472.

    Article  CAS  Google Scholar 

  69. Keller SA, Schattner EJ, Cesarman E . Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 2000; 96: 2537–2542.

    CAS  PubMed  Google Scholar 

  70. Li QQ, Wang WJ, Xu JD, Cao XX, Chen Q, Yang JM et al. Up-regulation of CD147 and matrix metalloproteinase-2, -9 induced by P-glycoprotein substrates in multidrug resistant breast cancer cells. Cancer Sci 2007; 98: 1767–1774.

    Article  CAS  Google Scholar 

  71. Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E . CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem 2004; 279: 26991–27007.

    Article  CAS  Google Scholar 

  72. Tang W, Hemler ME . Caveolin-1 regulates matrix metalloproteinases-1 induction and CD147/EMMPRIN cell surface clustering. J Biol Chem 2004; 279: 11112–11118.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Dean Kedes (University of Virginia, Charlottesville, VA) and Dr Dirk Dittmer (University of North Carolina, Chapel Hill, NC) for providing PEL cell lines. This work was supported by grants from the National Institutes of Health (R01-CA142362 to CP; R01-CA073839 and R01-CA082867 to BPT), the South Carolina COBRE for Oral Health (P20-RR017696; CP subproject investigator) and the MUSC Hollings Cancer Center (core Grant P30-CA138313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Parsons.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Z., Dai, L., Bratoeva, M. et al. Cooperative roles for emmprin and LYVE-1 in the regulation of chemoresistance for primary effusion lymphoma. Leukemia 25, 1598–1609 (2011). https://doi.org/10.1038/leu.2011.144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.144

Keywords

This article is cited by

Search

Quick links