Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Neurons from stem cells: preventing an identity crisis

Abstract

It is now possible to grow stem cells from a wide variety of tissues. Some of these cells have been shown to differentiate into presumptive neurons in vitro, or after transplantation into the developing or adult brain. When stem cells derived directly from the brain are induced to differentiate, there is a high probability that some of the resulting cells will be neurons. However, when stem cells from one tissue (for example, bone marrow or skin) take on the phenotype of another (for example, brain), rigorous criteria are required to define neurons. The aim of this review is to discuss the various techniques that are used to identify a cell as a neuron.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuronal development.
Figure 2: Neuronal lineage.
Figure 3: Progeny of a neural stem cell.

Similar content being viewed by others

References

  1. Bjorklund, A. & Svendsen, C. N. Chimeric stem cells. Trends Mol. Med. 7, 144–146 (2001).

    Article  CAS  Google Scholar 

  2. Anderson, D. J., Gage, F. H. & Weissman, I. L. Can stem cells cross lineage boundaries? Nature Med. 7, 393–395 (2001).

    Article  CAS  Google Scholar 

  3. Orkin, S. H. Stem cell alchemy. Nature Med. 6, 1212–1213 (2000).

    Article  CAS  Google Scholar 

  4. Cajal, R. S. Recollections of My Life (translated by E. H. Craigie with the assistance of J. Cano) (Am. Phil. Soc., Philadelphia, 1937; reprinted by MIT Press, Cambridge, Massachusetts, 1989).

    Book  Google Scholar 

  5. Raff, M. C., Miller, R. H. & Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature 303, 390–396 (1983).

    Article  CAS  Google Scholar 

  6. Zhang, S.-C. Defining glial cells during CNS development. Nature Rev. Neurosci. 2, 840–843 (2001).

    Article  CAS  Google Scholar 

  7. Diez del Corral, R. & Storey, K. G. Markers in vertebrate neurogenesis. Nature Rev. Neurosci. 2, 835–839 (2001).

    Article  CAS  Google Scholar 

  8. Garcia-Verdugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A. & Alvarez-Buylla, A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J. Neurobiol. 36, 234–248 (1998).

    Article  CAS  Google Scholar 

  9. Rakic, P. Guidance of neurons migrating to the fetal monkey neocortex. Brain Res. 33, 471–476 (1971).

    Article  CAS  Google Scholar 

  10. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    Article  CAS  Google Scholar 

  11. Luskin, M. B., Zigova, T., Soteres, B. J. & Stewart, R. R. Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol. Cell. Neurosci. 8, 351–366 (1997).

    Article  CAS  Google Scholar 

  12. Katsetos, C. D. et al. Aberrant localization of the neuronal class III β-tubulin in astrocytomas. Arch. Pathol. Lab. Med. 125, 613–624 (2001).

    CAS  PubMed  Google Scholar 

  13. Sensenbrenner, M., Lucas, M. & Deloulme, J. C. Expression of two neuronal markers, growth-associated protein 43 and neuron-specific enolase, in rat glial cells. J. Mol. Med. 75, 653–663 (1997).

    Article  CAS  Google Scholar 

  14. Rosser, A. E., Tyers, P., Ter Borg, M., Dunnett, S. B. & Svendsen, C. N. Co-expression of MAP-2 and GFAP in cells developing from rat EGF responsive precursor cells. Brain Res. Dev. Brain Res. 98, 291–295 (1997).

    Article  CAS  Google Scholar 

  15. Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211 (1992).

    CAS  PubMed  Google Scholar 

  16. Woodbury, D., Schwarz, E. J., Prockop, D. J. & Black, I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364–370 (2000).

    Article  CAS  Google Scholar 

  17. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  18. Toma, J. G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biol. 3, 778–784 (2001).

    Article  CAS  Google Scholar 

  19. Onifer, S. M., White, L. A., Whittemore, S. R. & Holets, V. R. In vitro labeling strategies for identifying primary neural tissue and a neuronal cell line after transplantation. Cell Transplant. 2, 131–149 (1993).

    Article  CAS  Google Scholar 

  20. Craig, C. G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    Article  CAS  Google Scholar 

  21. Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J. & Gage, F. H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).

    Article  CAS  Google Scholar 

  22. Brazelton, T. R., Rossi, F. M., Keshet, G. I. & Blau, H. M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779 (2000).

    Article  CAS  Google Scholar 

  23. Mezey, E. & Chandross, K. J. Bone marrow: a possible alternative source of cells in the adult nervous system. Eur. J. Pharmacol. 405, 297–302 (2000).

    Article  CAS  Google Scholar 

  24. Magavi, S. S., Leavitt, B. R. & Macklis, J. D. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    Article  CAS  Google Scholar 

  25. Li, Y., Chen, J., Wang, L., Lu, M. & Chopp, M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56, 1666–1672 (2001).

    Article  CAS  Google Scholar 

  26. Huneeus, F. C. & Davison, P. F. Fibrillar proteins from squid axons. I. Neurofilament protein. J. Mol. Biol. 52, 415–428 (1970).

    Article  CAS  Google Scholar 

  27. Viereck, C., Tucker, R. P., Binder, L. I. & Matus, A. Phylogenetic conservation of brain microtubule-associated proteins MAP2 and tau. Neuroscience 26, 893–904 (1988).

    Article  CAS  Google Scholar 

  28. Wiedenmann, B. & Franke, W. W. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41, 1017–1028 (1985).

    Article  CAS  Google Scholar 

  29. Caccamo, D. et al. Immunohistochemistry of a spontaneous murine ovarian teratoma with neuroepithelial differentiation. Neuron-associated β-tubulin as a marker for primitive neuroepithelium. Lab. Invest. 60, 390–398 (1989).

    CAS  PubMed  Google Scholar 

  30. Matus, A. Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu. Rev. Neurosci. 11, 29–44 (1988).

    Article  CAS  Google Scholar 

  31. Schmechel, D., Marangos, P. J. & Brightman, M. Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276, 834–836 (1978).

    Article  CAS  Google Scholar 

  32. Garner, C. C., Brugg, B. & Matus, A. A 70-kilodalton microtubule-associated protein (MAP2c), related to MAP2. J. Neurochem. 50, 609–615 (1988).

    Article  CAS  Google Scholar 

  33. Marusich, M. F. & Weston, J. A. Identification of early neurogenic cells in the neural crest lineage. Dev. Biol. 149, 295–306 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive N. Svendsen.

Related links

Related links

DATABASES

LocusLink

EGF

galactocerebrosidase

GFAP

nestin

NeuN

NF-H

NSE

synaptophysin

Tau

β-tubulin III

FURTHER INFORMATION

The Waisman Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svendsen, C., Bhattacharyya, A. & Tai, YT. Neurons from stem cells: preventing an identity crisis. Nat Rev Neurosci 2, 831–834 (2001). https://doi.org/10.1038/35097581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35097581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing