Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies

Abstract

Light reflection from computer monitors, car dashboards and any other optical surface can impair the legibility of displays, degrade transmission of optical components and in some cases may even pose safety hazards. Antireflective coatings are therefore widely used, but existing antireflection technologies often perform sub-optimally or are expensive to implement. Here we present an alternative approach to antireflection coatings, based on an extension of our photo-aligning and photo-patterning technology for liquid-crystal displays1,2 (LCDs) and liquid-crystal polymer films with smooth surfaces3,4 to optical polymer films with controlled surface topologies. Nano- and micro-corrugated topologies are shown to result from optically induced monomer phase-separation on the polymer surfaces. The properties of the resulting films make them suitable high-performance and low-cost antireflection coatings for optical components of virtually any size, shape and material. Moreover, the approach can be used to form a wide range of other functional polymer thin films with isotropic as well as anisotropic topologies. For example, films can be produced whose optical birefringence exceeds that of the birefringence of the polymer material itself. These new films can also be used as diffractive thin films, diffusers, and directional reflectors which preserve light polarization, or as substrates for aligning liquid crystals to produce bright, low-power-consumption LCDs with integrated optical functions and memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometrically isotropic and anisotropic MC nano-topologies.
Figure 2: Highly efficient, isotropic, broadband antireflective MC coatings on glass.
Figure 3: Anisotropic MC topologies on aligned substrates and hybrid MC alignment.
Figure 4: Optically strongly birefringent MC film made with low-birefringence LCP.
Figure 5: Bright directional MC thin-film diffusers/reflectors.

Similar content being viewed by others

References

  1. Schadt, M., Schmitt, K., Kozinkov, V. & Chigrinov, V. Surface-induced alignment of liquid crystals by linearly polymerized photopolymers. Jpn J. Appl. Phys. 31, 2155–2164 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Schadt, M., Seiberle, H. & Schuster, A. Optical patterning of multi-domain liquid-crystal displays with wide viewing-angles. Nature 381, 212–215 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Schadt, M., Seiberle, H., Schuster, A. & Kelly, S. M. Photo-induced alignment and patterning of liquid crystalline polymer films on single substrates. Jpn J. Appl. Phys. 34, 3240–3249 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Benecke, C., Seiberle, H. & Schadt, M. Determination of director distributions in liquid crystal polymer-films by means of generalized anisotropic ellipsometry. Jpn J. Appl. Phys. 39, 525–531 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Bass, M. (ed.) Handbook of Optics. Fundamentals, Techniques & Design (McGraw-Hill, New York, 1995).

    Google Scholar 

  6. Fraunhofer, J. Versuche ueber die Ursachen des Anlaufens und Mattwerdens des Glases und die Mittel, denselben zuvorzukommen (Gesammelte Schriften, München, 1888).

    Google Scholar 

  7. Thomas, I. M. Method for preparing porous silica antireflection coatings varying in refractive index from 1.22 to 1.44. Appl. Opt. 31, 6145–6149 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Moulton, H. M. Method of forming a reflection reducing coating. US Patent No. 2536764 (1951).

  9. Clapham, P. B. & Hutley, M. C. Reduction of lens-reflection by the ‘moth eye’ principle. Nature 244, 281–282 (1973).

    Article  ADS  Google Scholar 

  10. Heine, C. & Morf, R. H. Submicron gratings for solar applications. Appl. Opt. 34, 2476–2482 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Hodgkinson, I.J. Linear and circular birefringence of coatings fabricated by serial bi-deposition. Proc. SPIE 3790, 119–132 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Cognard, J. Alignment of nematic liquid crystals and their mixtures. Mol. Cryst. Liq. Cryst. 78 (Suppl. 1), (1981).

  13. Rütschi, M., Grüter, P., Fünfschilling, J. & Güntherodt, H. -J. New method for creating liquid crystal devices. Science 265, 512–514 (1994).

    Article  ADS  Google Scholar 

  14. Flanders, D. C. Submicrometer periodicity gratings as artificial anisotropic dielectrics. Appl. Phys. Lett. 42, 492–494 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Wallheim, S., Schäffer, E., Mlynek, J. & Steiner, U. Nanophase-separated polymer films as high-performance antireflection coatings. Science 283, 520–522 (1999).

    Article  ADS  Google Scholar 

  16. Reiter, G. Unstable thin polymer films: rupture and de-wetting processes. Langmuir 9, 1344–1351 (1993).

    Article  CAS  Google Scholar 

  17. Chen, K., Chang, C., DelPico, J., Seiberle, H. & Schadt, M. Integral-color plastic LCD: the ultimate flat-panel display. Proc. Soc. Inform. Displ. SID99 1054–1057 (1999).

  18. Schadt, M. Liquid crystal displays and novel optical thin-films enabled by photo-alignment. Proc. Int. Liq. Cryst. Conf. ILCC2000 (in the press).

  19. Schmitt, K., Fünfschilling, J., Cherkaoui, Z. & Schadt, M. Fast time-sequential color switch based on cholesteric filters and DHF-LCDs. Proc. Int. Displ. Res. Conf. IDRC99 437–440 (1999).

  20. Moia, F., Seiberle, H. & Schadt, M. Optical LPP/LCP-devices: novel optical security elements. Proc. SPIE 3973, 196–303 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Schadt, M., Schuster, A. & Seiberle, H. Optical component and method of manufacture. US Patent No. 6160597 (1994).

  22. Virga, E. G. & Schadt, M. Corrugations on the free surface of liquid crystal layers. Jpn J. Appl. Phys. 39, 6637–6642 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Virga, E. G. Disclinations and bumps in liquid crystals. Phil. Trans. R. Soc. Lond. A 355, 2035–2044 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Seiberle, H. & Schadt, M. Liquid crystal photo-alignment layer. Int. Patent Application PCT/IB99/01001 (1998).

  25. Berreman, D. W. Surface shape and alignment of nematic liquid crystals. Phys. Rev. Lett. 28, 1683–1686 (1972).

    Article  ADS  CAS  Google Scholar 

  26. Gibbons, W. M., Shannon, P. J., Sun, S. T. & Swetlin, B. J. Surface-mediated alignment of nematic liquid crystals with polarized laser light. Nature 351, 49–50 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Schadt, M. & Seiberle, H. Optical patterning of multidomain LCDs. Proc. Soc. Inform. Displ. SID97 397–400 (1997).

  28. Jones, J. C. et al. Zenithal bistable devices: towards the electronic book with a simple LCD. Proc. Soc. Inform. Displ. (Int. Displ. Workshop 2000) SID IDW00 301–304 (2000).

  29. Schadt, M. Advances in LPP-photo-alignment of liquid crystals applied to the phase-retarder image of Alfred Saupe. Mol. Cryst. Liq. Cryst. 292, 235–243 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schadt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibn-Elhaj, M., Schadt, M. Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies. Nature 410, 796–799 (2001). https://doi.org/10.1038/35071039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35071039

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing