Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS

Abstract

In the vertebrate central nervous system (CNS), a cascade of signals that originates in the ectoderm adjacent to the neural tube is propagated by the roof plate to dorsalize the neural tube1. Here we report that the phenotype of the spontaneous neurological mutant mouse dreher ( dr)2,3,4,5 results from a failure of the roof plate to develop. Dorsalization of the neural tube is consequently affected: dorsal interneurons in the spinal cord and granule neurons in the cerebellar cortex are lost, and the dorsal vertebral neural arches fail to form. Positional cloning of dreher indicates that the LIM homeodomain protein, Lmx1a, is affected in three different alleles of dreher. Lmx1a is expressed in the roof plate along the neuraxis during development of the CNS. Thus, Lmx1a is required for development of the roof plate and, in turn, for specification of dorsal cell fates in the CNS and developing vertebrae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Postnatal brain phenotype.
Figure 2: Genetics.
Figure 3: Positional cloning.
Figure 4: drJ/drJ embryos lack a roof plate.
Figure 5: Spinal cord phenotype.
Figure 6: Cerebellar development.

Similar content being viewed by others

References

  1. Lee, K. & Jessell, T. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. 22, 261–294 ( 1999).

    Article  CAS  Google Scholar 

  2. Lyons, M., Rastan, S. & Brown, S. Genetic Variants of the Laboratory Mouse 195 (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  3. Bergstrom, D., Gagnon, L. & Eicher, E. Genetic and physical mapping of the dreher locus on mouse chromosome 1. Genomics 59, 291– 299 (1999).

    Article  CAS  Google Scholar 

  4. Sekiguchi, M., Shimai, K., Guo, H. & Nowakowski, R. Cytoarchitectonic abnormalities in hippocampal formation and cerebellum of dreher mutant. Brain Res. Dev. Brain Res. 67, 105– 112 (1992).

    Article  CAS  Google Scholar 

  5. Sekiguchi, M. et al. Disruption of neuronal migration in the neocortex of the dreher mutant mouse. Brain Res. Dev. Brain Res. 77, 37–43 (1994).

    Article  CAS  Google Scholar 

  6. Sidman, R. in Genetics of Neurological and Psychiatric Disorders (eds Kety, S., Rowland, L., Sidman,R. & Matthysse, S.) 19–46 (Raven, New York, 1983).

    Google Scholar 

  7. Almasan, A., Mangelsdorf, D., Ong, E., Wahl, G. & Evans, R. Chromosomal location of the human retinoid X receptors. Genomics 20, 397–403 ( 1994).

    Article  CAS  Google Scholar 

  8. Walsten, D., Lyons, J. & Zagaja. Shaker short-tail, a spontaneous neurological mutant in the mouse. J. Hered. 74, 421–425 (1983).

    Article  Google Scholar 

  9. German, M., Wang, J., Chadwick, R. & Rutter, W. Synergistic activation of the insulin gene by a LIM-homeo domain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex. Genes Dev. 6, 2165–2176 ( 1992).

    Article  CAS  Google Scholar 

  10. Schmeichel, K. & Beckerle, M. The LIM domain is a modular protein-binding interface. Cell 79, 211– 219 (1994).

    Article  CAS  Google Scholar 

  11. Perez-Alvarado, G. et al. Structure of the carboxy-terminal LIM domain from the cysteine rich protein CRP. Nature Struct. Biol. 1, 388–398 (1994).

    Article  CAS  Google Scholar 

  12. Perez-Alvarado, G. et al. Structure of the cysteine-rich intestinal protein, CRIP. J. Mol. Biol. 257, 153–174 (1996).

    Article  CAS  Google Scholar 

  13. Konrat, R., Weiskitchen, R., Krautler, B. & Bister, K. Solution structure of the carboxy-terminal LIM domain from quail cysteine-rich protein CRP2. J. Biol. Chem. 272, 12001– 12007 (1997).

    Article  CAS  Google Scholar 

  14. Johnson, J. et al. Transcriptional synergy between LIM-Homeodomain proteins and basic helix-loop-helix proteins: the LIM2 domain determines specificity. Mol. Cell Biol. 17, 3488–3496 (1997).

    Article  CAS  Google Scholar 

  15. Cordes, S. & Barsh, G. The mouse segmentation gene kr encodes a nocel basic domain-leucine zipper transcription factor. Cell 79, 1025–1034 ( 1994).

    Article  CAS  Google Scholar 

  16. Kataoka, K., Noda, M. & Nishizawa, M. Maf nucelar protein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol. Cell Biol. 14, 700–712 ( 1994).

    Article  CAS  Google Scholar 

  17. Liem, K., Tremml, G. & Hatten, M. The role of roof plate and its resident TGFB-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91, 127–138 (1997).

    Article  CAS  Google Scholar 

  18. Ben-Arie, N. et al. Math1 is essential for genesis of cerebellar granule neurons. Nature 390, 169–172 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Liem, K. F. Jr, Tremml, G., Roelink, H. & Jessell, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979 (1995).

    Article  CAS  Google Scholar 

  20. Alder, J., Cho, N. & Hatten, M. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17, 389– 399 (1996).

    Article  CAS  Google Scholar 

  21. Alder, J., Lee, K. J., Jessell, T. M. & Hatten, M. E. Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells. Nature Neurosci. 2, 535–540 (1999).

    Article  CAS  Google Scholar 

  22. Millonig, J., Millen, K. & Hatten, M. A detailed genetic map of the weaver locus on Chromosome 16. Mamm. Genome 7, 616– 618 (1996).

    Article  CAS  Google Scholar 

  23. Schaeren-Wiemers, N. & Gerfin-Moser, A. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431– 440 (1993).

    Article  CAS  Google Scholar 

  24. Millen, K. & Hui, C. -C. in A Laboratory Guide to RNA; Isolation, Analysis and Synthesis (eds Millen, K. & Hui, C.-C.) 339– 355 (Wiley-Liss, New York, 1996).

  25. Parr, B., Shey, M., Vassieva, G. & McMahon, A. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development 119, 247– 261 (1993).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Wahlsten for drsst embryos; J. Johnson for the Math1 in situ probe; T. Jessell for antibodies against LH2 and MafB; B. Hogan for the Bmp6 probe and E8.5 cDNA library. M. Cooper and D. Patterson provided technical assistance; C. Bonal and L. Chemes participated in the sequence analysis of drJ; N. Adams provided assistance with digital imaging; and D. Benyaklef prepared the Figures. We thank N. Heintz, T. Jessell, J. Alder, K. Lee, P. Matteson, R. Slavkov, R. Wingate and K. Zimmerman for helpful discussions. This work was supported by a Program Project grant (M.E.H.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Hatten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millonig, J., Millen, K. & Hatten, M. The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403, 764–769 (2000). https://doi.org/10.1038/35001573

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001573

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing