Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytochrome P450 2D6 activity predicts discontinuation of tamoxifen therapy in breast cancer patients

Abstract

The selective estrogen receptor modulator tamoxifen is routinely used for treatment and prevention of estrogen-receptor-positive breast cancer. Studies of tamoxifen adherence suggest that over half of patients discontinue treatment before the recommended 5 years. We hypothesized that polymorphisms in CYP2D6, the enzyme responsible for tamoxifen activation, predict for tamoxifen discontinuation. Tamoxifen-treated women (n=297) were genotyped for CYP2D6 variants and assigned a ‘score’ based on predicted allele activities from 0 (no activity) to 2 (high activity). Correlation between CYP2D6 score and discontinuation rates at 4 months was tested. We observed a strong nonlinear correlation between higher CYP2D6 score and increased rates of discontinuation (r2=0.935, P=0.018). These data suggest that presence of active CYP2D6 alleles may predict for higher likelihood of tamoxifen discontinuation. Therefore, patients who may be most likely to benefit from tamoxifen may paradoxically be most likely to discontinue treatment prematurely.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Partridge AH, Avorn J, Wang PS, Winer EP . Adherence to therapy with oral antineoplastic agents. J Natl Cancer Inst 2002; 94: 652–661.

    Article  PubMed  Google Scholar 

  2. Fisher B, Dignam J, Bryant J, Wolmark N . Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial. J Natl Cancer Inst 2001; 93: 684–690.

    Article  CAS  PubMed  Google Scholar 

  3. Stewart HJ, Prescott RJ, Forrest AP . Scottish adjuvant tamoxifen trial: a randomized study updated to 15 years. J Natl Cancer Inst 2001; 93: 456–462.

    Article  CAS  PubMed  Google Scholar 

  4. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687–1717.

    Article  Google Scholar 

  5. Coombes RC, Hall E, Gibson LJ, Paridaens R, Jassem J, Delozier T et al. A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 2004; 350: 1081–1092.

    Article  CAS  PubMed  Google Scholar 

  6. Coates AS, Keshaviah A, Thurlimann B, Mouridsen H, Mauriac L, Forbes JF et al. Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1-98. J Clin Oncol 2007; 25: 486–492.

    Article  CAS  PubMed  Google Scholar 

  7. Demissie S, Silliman RA, Lash TL . Adjuvant tamoxifen: predictors of use, side effects, and discontinuation in older women. J Clin Oncol 2001; 19: 322–328.

    Article  CAS  PubMed  Google Scholar 

  8. Maurice A, Howell A, Evans DG, O'Neil AC, Scobie S . Predicting compliance in a breast cancer prevention trial. Breast J 2006; 12: 446–450.

    Article  PubMed  Google Scholar 

  9. Powles T, Eeles R, Ashley S, Easton D, Chang J, Dowsett M et al. Interim analysis of the incidence of breast cancer in the Royal Marsden Hospital tamoxifen randomised chemoprevention trial. Lancet 1998; 352: 98–101.

    Article  CAS  PubMed  Google Scholar 

  10. Lash TL, Fox MP, Westrup JL, Fink AK, Silliman RA . Adherence to tamoxifen over the five-year course. Breast Cancer Res Treat 2006; 99: 215–220.

    Article  PubMed  Google Scholar 

  11. Partridge AH . Non-adherence to endocrine therapy for breast cancer. Ann Oncol 2006; 17: 183–184.

    Article  CAS  PubMed  Google Scholar 

  12. Chlebowski RT, Geller ML . Adherence to endocrine therapy for breast cancer. Oncology 2006; 71: 1–9.

    Article  CAS  PubMed  Google Scholar 

  13. Grunfeld EA, Hunter MS, Sikka P, Mittal S . Adherence beliefs among breast cancer patients taking tamoxifen. Patient Educ Couns 2005; 59: 97–102.

    Article  PubMed  Google Scholar 

  14. Atkins L, Fallowfield L . Intentional and non-intentional non-adherence to medication amongst breast cancer patients. Eur J Cancer 2006; 42: 2271–2276.

    Article  PubMed  Google Scholar 

  15. Partridge AH, LaFountain A, Mayer E, Taylor BS, Winer E, snis-Alibozek A . Adherence to initial adjuvant anastrozole therapy among women with early-stage breast cancer. J Clin Oncol 2008; 26: 556–562.

    Article  CAS  PubMed  Google Scholar 

  16. Osborne CK . Tamoxifen in the treatment of breast cancer. N Engl J Med 1998; 339: 1609–1618.

    Article  CAS  PubMed  Google Scholar 

  17. Stearns V, Johnson MD, Rae JM, Morocho A, Novielli A, Bhargava P et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 2003; 95: 1758–1764.

    Article  CAS  PubMed  Google Scholar 

  18. Desta Z, Ward BA, Soukhova NV, Flockhart DA . Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004; 310: 1062–1075.

    Article  CAS  PubMed  Google Scholar 

  19. Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 2005; 97: 30–39.

    Article  CAS  PubMed  Google Scholar 

  20. Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 2006; 80: 61–74.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson MD, Zuo H, Lee KH, Trebley JP, Rae JM, Weatherman RV et al. Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 2004; 85: 151–159.

    Article  CAS  PubMed  Google Scholar 

  22. Goetz MP, Rae JM, Suman VJ, Safgren SL, Ames MM, Visscher DW et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 2005; 23: 9312–9318.

    Article  CAS  PubMed  Google Scholar 

  23. Cuzick J, Sestak I, Cella D, Fallowfield L . Treatment-emergent endocrine symptoms and the risk of breast cancer recurrence: a retrospective analysis of the ATAC trial. Lancet Oncol 2008; 9: 1143–1148.

    Article  CAS  PubMed  Google Scholar 

  24. Mortimer JE, Flatt SW, Parker BA, Gold EB, Wasserman L, Natarajan L et al. Tamoxifen, hot flashes and recurrence in breast cancer. Breast Cancer Res Treat 2008; 108: 421–426.

    Article  CAS  PubMed  Google Scholar 

  25. Bradford LD . CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002; 3: 229–243.

    Article  CAS  PubMed  Google Scholar 

  26. Blake MJ, Gaedigk A, Pearce RE, Bomgaars LR, Christensen ML, Stowe C et al. Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther 2007; 81: 510–516.

    Article  CAS  PubMed  Google Scholar 

  27. Jin Y, Hayes DF, Li L, Robarge J, Skaar T, Phillips S et al. Estrogen receptor genotypes influence hot flash prevalence and composite score before and after tamoxifen therapy. J Clin Oncol 2008; 26: 5849–5854.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Goetz MP, Knox SK, Suman VJ, Rae JM, Safgren SL, Ames MM et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 2007; 101: 113–121.

    Article  CAS  PubMed  Google Scholar 

  29. Bonanni B, Macis D, Maisonneuve P, Johansson HA, Gucciardo G, Oliviero P et al. Polymorphism in the CYP2D6 tamoxifen-metabolizing gene influences clinical effect but not hot flashes: data from the Italian Tamoxifen Trial. J Clin Oncol 2006; 24: 3708–3709.

    Article  PubMed  Google Scholar 

  30. Schroth W, Antoniadou L, Fritz P, Schwab M, Muerdter T, Zanger UM et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 2007; 25: 5187–5193.

    Article  CAS  PubMed  Google Scholar 

  31. Wegman P, Vainikka L, Stal O, Nordenskjold B, Skoog L, Rutqvist LE et al. Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res 2005; 7: R284–R290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wegman P, Elingarami S, Carstensen J, Stal O, Nordenskjold B, Wingren S . Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res 2007; 9: R7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nowell SA, Ahn J, Rae JM, Scheys JO, Trovato A, Sweeney C et al. Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat 2005; 91: 249–258.

    Article  CAS  PubMed  Google Scholar 

  34. Okishiro M, Taguchi T, Jin KS, Shimazu K, Tamaki Y, Noguchi S . Genetic polymorphisms of CYP2D6*10 and CYP2C19*2,*3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer 2009; 115: 952–961.

    Article  CAS  Google Scholar 

  35. Newman WG, Hadfield KD, Latif A, Roberts SA, Shenton A, McHague C et al. Impaired tamoxifen metabolism reduces survival in familial breast cancer patients. Clin Cancer Res 2008; 14: 5913–5918.

    Article  CAS  PubMed  Google Scholar 

  36. Ramon YC, Altes A, Pare L, Del RE, Alonso C, Barnadas A et al. Impact of CYP2D6 polymorphisms in tamoxifen adjuvant breast cancer treatment. Breast Cancer Res Treat 2009. [E-pub ahead of print].

  37. Bijl MJ, van Schaik RH, Lammers LA, Hofman A, Vulto AG, van Gelder T et al. The CYP2D6*4 polymorphism affects breast cancer survival in tamoxifen users. Breast Cancer Res Treat 2009. [E-pub ahead of print].

  38. Fellowes D, Fallowfield LJ, Saunders CM, Houghton J . Tolerability of hormone therapies for breast cancer: how informative are documented symptom profiles in medical notes for ‘well-tolerated’ treatments? Breast Cancer Res Treat 2001; 66: 73–81.

    Article  CAS  PubMed  Google Scholar 

  39. Osterberg L, Blaschke T . Adherence to medication. N Engl J Med 2005; 353: 487–497.

    Article  CAS  PubMed  Google Scholar 

  40. Horne R, Weinman J . Patients’ beliefs about prescribed medicines and their role in adherence to treatment in chronic physical illness. J Psychosom Res 1999; 47: 555–567.

    Article  CAS  Google Scholar 

  41. Partridge AH, Wang PS, Winer EP, Avorn J . Nonadherence to adjuvant tamoxifen therapy in women with primary breast cancer. J Clin Oncol 2003; 21: 602–606.

    Article  CAS  PubMed  Google Scholar 

  42. Hayes DF . Clinical practice. Follow-up of patients with early breast cancer. N Engl J Med 2007; 356: 2505–2513.

    Article  CAS  PubMed  Google Scholar 

  43. Stearns V . Clinical update: new treatments for hot flushes. Lancet 2007; 369: 2062–2064.

    Article  PubMed  Google Scholar 

  44. Le Corre P, Parmer RJ, Kailasam MT, Kennedy BP, Skaar TP, Ho H et al. Human sympathetic activation by alpha2-adrenergic blockade with yohimbine: bimodal, epistatic influence of cytochrome P450-mediated drug metabolism. Clin Pharmacol Ther 2004; 76: 139–153.

    Article  CAS  PubMed  Google Scholar 

  45. Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS . The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 2008; 83: 234–242.

    Article  CAS  PubMed  Google Scholar 

  46. Alfaro CL, Lam YW, Simpson J, Ereshefsky L . CYP2D6 inhibition by fluoxetine, paroxetine, sertraline, and venlafaxine in a crossover study: intraindividual variability and plasma concentration correlations. J Clin Pharmacol 2000; 40: 58–66.

    Article  CAS  PubMed  Google Scholar 

  47. Kotlyar M, Brauer LH, Tracy TS, Hatsukami DK, Harris J, Bronars CA et al. Inhibition of CYP2D6 activity by bupropion. J Clin Psychopharmacol 2005; 25: 226–229.

    Article  CAS  PubMed  Google Scholar 

  48. Skinner MH, Kuan HY, Pan A, Sathirakul K, Knadler MP, Gonzales CR et al. Duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers. Clin Pharmacol Ther 2003; 73: 170–177.

    Article  CAS  PubMed  Google Scholar 

  49. Madeira M, Levine M, Chang TK, Mirfazaelian A, Bellward GD . The effect of cimetidine on dextromethorphan O-demethylase activity of human liver microsomes and recombinant CYP2D6. Drug Metab Dispos 2004; 32: 460–467.

    Article  CAS  PubMed  Google Scholar 

  50. Hamelin BA, Bouayad A, Methot J, Jobin J, Desgagnes P, Poirier P et al. Significant interaction between the nonprescription antihistamine diphenhydramine and the CYP2D6 substrate metoprolol in healthy men with high or low CYP2D6 activity. Clin Pharmacol Ther 2000; 67: 466–477.

    Article  CAS  PubMed  Google Scholar 

  51. Cella D, Fallowfield L, Barker P, Cuzick J, Locker G, Howell A . Quality of life of postmenopausal women in the ATAC (‘Arimidex’, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for early breast cancer. Breast Cancer Res Treat 2006; 100: 273–284.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr C Kent Osborne and Dr Michael D Johnson for their valuable input. This work was supported in part by grants U-01 GM61373 and T-32 GM007767, Indiana University GCRC grant M01RR00750, University of Michigan GCRC grant M01-RR00042 and Georgetown University (NIH M01-RR13297), from the National Institute of General Medical Sciences (Bethesda, MD, USA), Damon Runyon-Lilly Clinical Investigator award CI-3 from the Damon Runyon Cancer Research Foundation (VS), Fashion Footwear Charitable Foundation of New York/QVC Presents Shoes on Sale (DFH) and Breast Cancer Research Foundation grant N003173 (JMR), and by grant number M01-RR000042 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J M Rae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rae, J., Sikora, M., Henry, N. et al. Cytochrome P450 2D6 activity predicts discontinuation of tamoxifen therapy in breast cancer patients. Pharmacogenomics J 9, 258–264 (2009). https://doi.org/10.1038/tpj.2009.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2009.14

Keywords

This article is cited by

Search

Quick links