Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Induction of human MDR1 gene expression by 2-acetylaminofluorene is mediated by effectors of the phosphoinositide 3-kinase pathway that activate NF-κB signaling

Abstract

The expression of P-glycoprotein encoded by the multidrug resistance (MDR1) gene is associated with the emergence of the MDR phenotype in cancer cells. Human MDR1 and its rodent homolog mdr1a and mdr1b are frequently overexpressed in liver cancers. However, the underlying mechanisms are largely unknown. The hepatocarcinogen 2-acetylaminofluorene (2-AAF) efficiently activates rat mdr1b expression in cultured cells and in Fisher 344 rats. We recently reported that activation of rat mdr1b in cultured cells by 2-AAF involves a cis-activating element containing a NF-κB binding site located −167 to −158 of the rat mdr1b promoter. 2-AAF activates IκB kinase (IKK), resulting in degradation of IκBβ and activation of NF-κB. In this study, we report that 2-AAF could also activate the human MDR1 gene in human hepatoma and embryonic fibroblast 293 cells. Induction of MDR1 by AAF was mediated by DNA sequence located at −6092 which contains a NF-κB binding site. Treating hepatoma cells with 2-AAF activated phosphoinositide 3-kinase (PI3K) and its downstream effectors Rac1, and NAD(P)H oxidase. Transient transfection assays demonstrated that constitutively activated PI3K and Rac1 enhanced the activation of the MDR1 promoter by 2-AAF. Treatment of hepatoma cells with 2-AAF also activated another PI3K downstream effector Akt. Transfection of recombinant encoding a dominant activated Akt also enhanced the activation of MDR1 promoter activation by 2-AAF. These results demonstrated that 2-AAF up-regulates MDR1 expression is mediated by the multiple effectors of the PI3K signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Alessi D, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P . 1997 Curr. Biol. 7: 261–269

  • Babio BM . 1999 Blood 93: 1464–1476

  • Bae YS, Sung JY, Kim OS, Kim YJ, Hur KC, Kazlauskas A, Rhee SG . 2000 J. Biol. Chem. 275: 10527–10531

  • Bae YS, Kang SW, Seo MS, Baines IC, Tekl E, Chock PB, Rhee SG . 1997 J. Biol. Chem. 272: 217–221

  • Bar-Sagi D, Hall A . 2000 Cell 103: 227–238

  • Benard V, Boh BP, Bokoch GM . 1999 J. Biol. Chem. 274: 13198–13204

  • Bishop A, Hall A . 2000 Biochem. J. 348: 241–255

  • Borst P . 1997 Cancer Biol. 8: 131–134

  • Chaudhary PM, Roninson IB . 1993 J. Natl. Cancer Inst. 85: 632–639

  • Chin KV, Tanaka S, Darlington G, Pastan I, Gottesman MM . 1990 J. Biol. Chem. 265: 221–226

  • Cieslik K, Abrams CB, Wu KK . 2001 J. Biol. Chem. 276: 1211–1219

  • Cornwell MM, Smith DE . 1993 J. Biol. Chem. 268: 15347–15350

  • Dame JE, Liu L, Rosten P, Humphries K, Jefferson AB, Majerus PW, Krystal G . 1996 Proc. Natl. Acad. Sci. USA 93: 1689–1693

  • De Mendez I, Garrett MC, Adams AG, Leto LT . 1994 J. Biol. Chem. 269: 16326–16332

  • Delhase M, Li N, Karin M . 2000 Nature 406: 367–368

  • Deng L, Lin-Lee YC, Claret FX, Kuo MT . 2001a J. Biol. Chem. 276: 413–420

  • Deng LS, Tatebe S, Lin-Lee YC, Ishikawa T, Kuo MT . 2001b In Clinically relevant resistance to anticancer agents (ed.) Murray D, and Anderson, B.S Kluwer in press

    Google Scholar 

  • Domin J, Waterfield M . 1997 FEBS Lett. 410: 690–693

  • Fairchild CR, Ivy SP, Rushmore T, Lee G, Koo P, Goldsmith ME, Myers CE, Farber E, Cowan KH . 1987 Proc. Natl. Acad. Sci. USA 84: 7701–7705

  • Franke TF, Kaplan DR, Cantley LC . 1997 Cell 88: 343–351

  • Fujiwara Y, Hoon DS, Yamada T, Umeshita K, Gotoh M, Sakon M, Nishisho I, Monden M . 2000 Jpn. J. Cancer Res. 91: 287–292

  • Hopkin K . 1998 Science 282: 1027–1030

  • Hu Z, Jin S, Scotto KW . 2000 J. Biol. Chem. 275: 2979–2985

  • Hutchinson J, Jin J, Cardiff RD, Woodgett JR, Muller WJ . 2001 Mol. Cell. Biol. 21: 2003–2212

  • Jin S, Scotto KW . 1998 Mol. Cell. Biol. 18: 4377–4384

  • Joneson T, Bar-Sagi D . 1998 J. Biol. Chem. 273: 17991–17994

  • Kane LP, Shapiro VS, Stokoe D, Weiss A . 1999 Curr. Biol. 9: 601–604

  • Karin M . 1999 Oncogene 12: 6867–6874

  • Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV . 1997 Nature 390: 632–636

  • Klippel A, Reinhard C, Karanaugh WM, Apell G, Escobedo M-A, Williams LT . 1996 Mol. Cell. Biol. 16: 4117–4127

  • Klippel A, Escobedo JA, Hirano M, Williams LT . 1994 Mol. Cell. Biol. 14: 2675–2685

  • Ling V . 1997 Cancer Chemother. Pharmacol. 40: S3–S8

  • Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold R, Rohrschneider LR . 1996 Genes Dev. 10: 1084–1095

  • Maehama T, Dixon JE . 1998 J. Biol. Chem. 273: 13375–13378

  • Mickley LA, Bates SE, Richert ND, Currier S, Tanaka S, Foss F, Rosen N, Fojo AT . 1989 J. Biol. Chem. 264: 18031–18040

  • Minden A, Lin A, Claret FX, Abo A, Karin M . 1995 Cell 81: 1147–1157

  • Montaner S, Perona R, Saniger L, Lacal JC . 1998 J. Biol. Chem. 273: 12779–12785

  • Ng IO, Liu CL, Fan ST, Ng M . 2000 Am. J. Clin. Pathol. 113: 355–363

  • Ogretmen B, Safa AR . 2000 Biochemistry 39: 194–204

  • Ogretmen B, Safa AR . 1999 Biochemistry 38: 2189–2199

  • Ozes MN, Mayo LD, Gustin JA, Pffeffer SR, Pffeffer LM, Donner DB . 2000 Nature 406: 307–

  • Ozes MN, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB . 1999 Nature 401: 86–90

  • Perona R, Montaner S, Saniger L, Sánchez-Pérez I, Bravo R, Lacal JC . 1997 Genes Dev. 11: 463–475

  • Poirie M., Fullerton NF, Kinouchi T, Smith BA, Beland FA . 1991 Carcinogenesis 12: 895–900

  • Reddy SA, Huang JH, Liao WSL . 1997 J. Biol. Chem. 272: 29167–29173

  • Ridle AJ, Paterson HF, Johnson CL, Diekmann D, Hall A . 1992 Cell 70: 401–410

  • Rothwarf DM, Karin M . 1999 www.stke.org/cgi/content/full/OC sigtrans; 1999/5/rel

  • Roya I, Park M . 1995 J. Biol. Chem. 270: 27780–27787

  • Sander EE, van Delft S, ten Klooster JP, Reid T, van der Kammen RA, Michielsm F, Collard G . 1998 J. Cell Biol. 30: 1385–1398

  • Schlessinger J . 2000 Cell 103: 211–225

  • Shen CJ, Clark D, Ueda K, Pastan I, Gottesman MM, Roninson IB . 1990 J. Biol. Chem. 265: 506–514

  • Silverman JA, Hill B . 1995 Mol. Carcinog. 13: 50–59

  • Sizemore N, Leung S, Stark GR . 1999 Mol. Cell. Biol. 19: 4798–4805

  • Soini Y, Virkajarvi N, Raunio H, Paakko P . 1996 J. Clin. Pathol. 49: 470–473

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV . 1997 Nature Genet. 15: 356–362

  • Stokoe D, Stephens LR, Copleand T, Gaffney PR, Reese CB, Painter GF, Holmes AB, McCormick F, Hawkins PT . 1997 Science 277: 567–570

  • Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkow M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B, Gierschik P, Seedort K, Hsuan JJ, Waterfield MD, Wetzker R . 1995 Science 269: 690–693

  • Sulciner DJ, Irani K, Yu ZX, Ferrans VJ, Goldschmidt-Clermont P, Finkel T . 1996 Mol. Cell. Biol. 16: 7115–7121

  • Sundseth R, MacDonald G, Ting J, King AC . 1997 Mol. Pharmacol. 51: 963–971

  • Teeter LD, Becker FF, Chisari FV, Li D, Kuo MT . 1990 Mol. Cell. Biol. 10: 5728–5735

  • Teeter L, Hsu HC, Curley SA, Tong MJ, Kuo MT . 1993 Int. J. Oncol. 2: 73–80

  • Teeter LD, Estes M, Chan JY, Atassi H, Sell S, Becker FF, Kuo MT . 1993 Mol. Carcinog. 8: 67–73

  • Thorgeirsson SS, Huber BE, Sorrell S, Fojo A, Pastan I, Gottesman MM . 1987 Science 236: 1120–1122

  • Uchiumi T, Kohno K, Tanimuram H, Matsuo K, Sato S, Uchida Y, Kuwano M . 1993 Cell Growth Differ. 4: 147–157

  • Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD . 1997 Trends Biochem. Sci. 22: 267–272

  • Verna L, Whysner J, Williams GM . 1996 Pharmacol. Ther. 71: 83–105

  • Vilaboa NE, Galan A, Troyano A, de Blas A, Aller P . 2000 J. Biol. Chem. 275: 24970–24976

  • Wang Q, Somwar R, Bilan PJ, Liu Z, Jin J, Woodgett JR, Klip A . 1999 Mol. Cell Biol. 19: 4008–4019

  • Yao YJ, Ping XL, Zhang H, Chen FF, Lee PK, Ahsan H, Chen CL, Lee PH, Peacocke M, Satella RM, Tsou HC . 1999 Oncogene 18: 3181–3185

  • Yeh KT, Chang JG, Chen YJ, Chen ST, Yu SY, Shih MC, Perng L, Wang JC, Tsai M, Chang CP . 2000 Cancer Invest. 18: 123–129

  • Zandi E, Chen Y, Karin M . 1998 Science 281: 1360–1363

  • Zhou G, Song R, Kuo MT . 1996 Cell Growth Differ. 7: 1369–1381

  • Zhou G, Kuo MT . 1997 J. Biol. Chem. 272: 15174–15183

Download references

Acknowledgements

We thank Drs KK Wu and Toren Finkel for recombinant DNA. This work was supported in part by NCI, National Institutes of Health Grants CA72404 and CA79085 (to M Tien Kuo) and CA16672 (to M.D. Anderson institutional core grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Macus Tien Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, M., Liu, Z., Wei, Y. et al. Induction of human MDR1 gene expression by 2-acetylaminofluorene is mediated by effectors of the phosphoinositide 3-kinase pathway that activate NF-κB signaling. Oncogene 21, 1945–1954 (2002). https://doi.org/10.1038/sj.onc.1205117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205117

Keywords

This article is cited by

Search

Quick links