Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Human fibroblast replicative senescence can occur in the absence of extensive cell division and short telomeres

Abstract

Ectopic expression of telomerase blocks both telomeric attrition and senescence, suggesting that telomeric attrition is a mitotic counting mechanism that culminates in replicative senescence. By holding human fibroblast cultures confluent for up to 12 weeks at a time, we confirmed previous observations and showed that telomeric attrition requires cell division and also, that senescence occurs at a constant average telomere length, not at a constant time point. However, on resuming cell division, these long-term confluent (LTC) cultures completed 15–25 fewer mean population doublings (MPDs) than the controls prior to senescence. These lost divisions were mainly accounted for by slow cell turnover of the LTC cultures and by permanent cell cycle exit of 94% of the LTC cells, which resulted in many cell divisions being unmeasured by the MPD method. In the LTC cultures, p27KIP1 accumulated and pRb became under-phosphorylated and under-expressed. Also, coincident with permanent cell cycle exit and before 1 MPD was completed, the LTC cultures upregulated the cell cycle inhibitors p21WAF and p16INK4A but not p14ARF and developed other markers of senescence. We then tested the relationship between cell cycle re-entry and the cell cycle-inhibitory proteins following subculture of the LTC cultures. In these cultures, the downregulation of p27KIP1 and the phosphorylation of pRb preceded the complete resumption of normal proliferation rate, which was accompanied by the down-regulation of p16INK4A. Our results show that most normal human fibroblasts can accumulate p16INK4A, p21WAF and p27KIP1 and senesce by cell division-independent mechanism(s). Furthermore, this form of senescence likely requires p16INK4A and perhaps p27KIP1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC . 1996 Proc. Natl. Acad. Sci. USA 93: 13742–13747

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB . 1992 Proc. Natl. Acad. Sci. USA 89: 10114–10118

  • Allsopp RC, Chang E, Kashefi-Aazam M, Rogaev EI, Piatyszak MA, Shay JW, Harley CB . 1995 Exp. Cell Res. 220: 194–200

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichsteiner S, Wright WE . 1998 Science 279: 349–352

  • Burns JE, Baird MC, Clark LJ, Burns P, Edington K, Chapman C, Mitchell R, Robertson G, Soutar D, Parkinson EK . 1993 Br. J. Cancer 67: 1274–1284

  • Collardo M, Medema RH, Garcia-Cao I, Dubuisson MLN, Barradas M, Glassford J, Rivas C, Burgering BMT, Serrano M, Lam EW-F . 2000 J. Biol. Chem. 275: 21960–21968

  • Cristofolo VJ, Pignolo RJ . 1993 Physiol. Rev. 73: 617–638

  • Dietrich C, Wallenfang K, Oesch F, Wieser R . 1997 Exp. Cell Res. 232: 72–78

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J . 1995 Proc. Natl. Acad. Sci. USA 92: 9363–9367

  • Durand B, Gao F-B, Raff M . 1997 EMBO J. 16: 306–317

  • Durand B, Fero ML, Roberts JM, Raff MC . 1998 Curr. Biol. 8: 431–440

  • Goldstein S, Singal GP . 1974 Exp. Cell Res. 88: 359–364

  • Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G . 1996 Mol. Cell Biol. 16: 859–867

  • Harley CB . 1991 Mutat. Res. 256: 271–282

  • Hayflick L . 1965 Exp. Cell Res. 37: 614–636

  • Holliday R . 1996 BioEssays 18: 3–5

  • Jiang X-R, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, Beeche M, Bodnar AG, Wahl GM, Tlsty TD, Chiu C-P . 1999 Nature Genet. 21: 111–114

  • Jones CJ, Kipling D, Morris M, Hepburn P, Skinner J, Bounacer A, Wyllie FS, Ivan M, Bartek J, Wynford-Thomas, Bond JA . 2000 Mol. Cell Biol. 20: 5690–5699

  • Kamijo T, van de Kamp E, Chong MJ, Zindy F, Diehl JA, Sherr CJ, McKinnon PJ . 1999 Cancer Res. 59: 2464–2469

  • Karlseder J, Broccoli D, Dal Y, Hardy S, de Lange T . 1999 Science 283: 1321–1324

  • Kipling D, Cooke HJ . 1990 Nature 347: 400–402

  • Kiyono T, Foster SA, Koop JI, McDougal JK, Galloway DA, Klingelhutz AJ . 1998 Nature 396: 84–88

  • Lee HW, Blasco MA, Gottlieb GJ, Horner II JW, Greider CW, DePinho RA . 1998 Nature 392: 569–574

  • Makarov VL, Hirose Y, Langmore JP . 1997 Cell 88: 657–666

  • Mazars GR, Jat PS . 1997 Proc. Natl. Acad. Sci. USA 94: 151–156

  • McConnell BB, Starborg M, Brookes S, Peters G . 1998 Curr. Biol. 8: 351–354

  • Morales CP, Holt SE, Ouellette M, Kaur KJ, Yan Y, Wilson KS, White MA, Wright WE, Shay JW . 1999 Nature Genet. 21: 115–118

  • Olovnikov AM . 1973 J. Theor. Biol. 41: 181–190

  • Palmero I, Pantoja C, Serrano M . 1998 Nature 395: 125–126

  • Polyak K, Kato J-Y, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A . 1994 Genes Dev. 8: 9–22

  • Robles SJ, Adami GR . 1998 Oncogene 16: 1113–1123

  • Rubelj I, Vondracek Z . 1999 J. Theor. Biol. 197: 425–438

  • Serrano M, Lee HW, Chin L, Cordon-Cardo C, Beach D, DePinho RA . 1996 Cell 85: 27–37

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . 1997 Cell 88: 593–602

  • Schor SL, Schor AM . 1987 BioEssays 7: 200–204

  • Shelton D, Chang E, Whittier PS, Choi D, Funk WD . 1999 Curr. Biol. 9: 939–945

  • Sitte N, Saretzki G, von Zglinicki T . 1998 Free Rad. Biol. Med. 24: 885–893

  • Smith JR, Whitney RG . 1980 Science 207: 82–84

  • van Steensel B, Smogorzewska A, de Lange T . 1998 Cell 92: 401–413

  • Stein GH, Dulic V . 1995 BioEssays 17: 537–543

  • Stott FJ, Bates S, James MJ, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden K, Peters G . 1998 EMBO J. 17: 5001–5014

  • Takuwa N, Takuwa Y . 1997 Mol. Cell Biol. 17: 5348–5358

  • Tresini M, Mawal-Dewan M, Cristofolo VJ, Sell C . 1998 Cancer Res. 58: 1–4

  • Vaziri H, Benchimol S . 1998 Curr. Biol. 8: 279–282

  • Vaziri H, West MD, Allsopp RC, Davison TS, Wu Y-S, Arrowsmith CH, Poirier GG, Benchimol S . 1997 EMBO J. 16: 6018–6033

  • Wong H, Riabowol K . 1996 Exp. Geront. 31: 311–325

  • Wright WE, Brasiskyte D, Piatyszek MA, Shay JW . 1996 EMBO J. 15: 1734–1741

  • von Zglinicki T, Saretzki G, Docke W, Lotze C . 1995 Exp. Cell Res. 220: 186–193

  • Zindy F, Quelle DE, Roussel MF, Sherr CJ . 1997 Oncogene 15: 203–211

Download references

Acknowledgements

The authors are very grateful to H Vaziri for the generous gift of the pBabest2 retroviral construct, to Karen Vousden and Gordon Peters for gifts of p14ARF antibodies, to the Cancer Research Campaign and the European Molecular Biology Organisation for financial support (K Steeghs), to Keith Vass for help with statistical analysis and to John Wyke for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munro, J., Steeghs, K., Morrison, V. et al. Human fibroblast replicative senescence can occur in the absence of extensive cell division and short telomeres. Oncogene 20, 3541–3552 (2001). https://doi.org/10.1038/sj.onc.1204460

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204460

Keywords

This article is cited by

Search

Quick links