Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Mutant K-ras enhances apoptosis in embryonic stem cells in combination with DNA damage and is associated with increased levels of p19ARF

Abstract

The roles of K-ras in neoplasia are not entirely understood, although there is evidence that K-ras affects susceptibility to apoptosis, modulating survival of DNA damaged cells which would otherwise be eliminated. In this study, we investigated the effects of mutant K-ras on apoptosis in vitro following DNA damage. To avoid complications resulting from mutations in other cancer-related genes and from the presence of endogenous K-ras, we derived K-ras null embryonic stem cells. Expression of either wild-type or mutant K-ras was reconstructed by stable plasmid transfection. The cell lines were treated with etoposide, cisplatin and UV radiation and apoptosis measured flow cytometrically. Mutant K-ras potentiated the effect of etoposide-derived DNA damage by increasing apoptosis, whereas absence of K-ras had the opposite effect. This pattern was similar but less marked with cisplatin, whereas UV yielded no difference in apoptosis with regard to K-ras status, suggesting that the effect of K-ras on apoptosis is dependent on the nature of the DNA damage. To investigate possible mechanisms, we examined the expression of p19ARF mRNA by RT–PCR. Cells expressing mutant K-ras produced elevated levels of p19ARF mRNA, which could link K-ras status with p53 expression and hence susceptibility to DNA damage-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aragane Y, Kulms D, Metze D, Wilkes G, Poppelmann B, Luger TA, Schwarz T . 1998 J. Cell. Biol. 140: 171–182

  • Arends MJ, McGregor AH, Toft NJ, Brown EJ, Wyllie AH . 1993 Br. J. Cancer. 68: 1127–1133

  • Arends MJ, McGregor AH, Wyllie AH . 1994 Am. J. Pathol. 144: 1045–1057

  • Arends MJ, Wyllie AH . 1991 Int. Rev. Exp. Pathol. 32: 223–254

  • Breivik J, Meling GI, Spurkland A, Rognum TO, Gaudernack G . 1994 Br. J. Cancer. 69: 367–371

  • Capon DJ, Seeburg PH, McGrath JP, Hayflick JS, Edman U, Levinson AD, Goeddel DV . 1983 Nature 304: 507–513

  • Chang MY, Won SJ, Yang BC, Jan MS, Liu HS . 1999 Exp. Cell. Res. 248: 589–598

  • Chen AY, Liu LF . 1994 Adv. Pharmacol. 29: 245–256

  • Chen G, Shu J, Stacey DW . 1997 Oncogene 15: 1643–1651

  • Corbet SW, Clarke AR, Gledhill S, Wyllie AH . 1999 Oncogene 18: 1537–1544

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME . 1997 Cell 91: 231–241

  • del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . 1997 Science 278: 687–689

  • Feig LA . 1999 Nat. Cell. Biol. 1: E25–E27

  • Haber DA . 1997 Cell 91: 555–558

  • Haraguchi M, Torii S, Matsuzawa SI, Xie Z, Kitada S, Krajewski S, Yoshida H, Mak TW, Reed JC . 2000 J. Exp. Med. 191: 1709–1720

  • Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, Bronson RT, Umanoff H, Edelmann W, Kucherlapati R, Jacks T . 1997 Genes. Dev. 11: 2468–2481

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ . 1997 Cell 91: 649–659

  • Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, Evan G . 1997 Nature 385: 544–548

  • Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J . 1997 EMBO J. 16: 2783–2793

  • Koo HM, Gray-Goodrich M, Kohlhagen G, McWilliams MJ, Jeffers M, Vaigro-Wolff A, Alvord WG, Monks A, Paull KD, Pommier Y, Vande Woude GF . 1999 J. Natl. Cancer. Inst. 91: 236–244

  • Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM . 1999 Nature 398: 630–634

  • Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ . 1995 Mol. Cell. Biol. 15: 6443–6453

  • Levine AJ . 1997 Cell 88: 323–331

  • MacKenzie KL, Dolnikov A, Millington M, Shounan Y, Symonds G . 1999 Blood 93: 2043–2056

  • Magee T, Marshall C . 1999 Cell 98: 9–12

  • McGill G, Shimamura A, Bates RC, Savage RE, Fisher DE . 1997 J. Cell. Biol. 138: 901–911

  • Moodie SA, Wolfman A . 1994 Trends. Genet. 10: 44–48

  • Navarro P, Valverde AM, Benito M, Lorenzo M . 1999 J. Biol. Chem. 274: 18857–18863

  • Oliff A . 1999 Biochim. Biophys. Acta. 1423: C19–C30

  • Orecchia R, Infusini E, Sciutto A, Rapallo A, Di Vinci A, Nigro S, Geido E, Giaretti W . 2000 J. Pathol. 190: 423–429

  • Palmero I, Pantoja C, Serrano M . 1998 Nature 395: 125–126

  • Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG . 2000 Nature 406: 207–210

  • Peli J, Schroter M, Rudaz C, Hahne M, Meyer C, Reichmann E, Tschopp J . 1999 EMBOJ. 18: 1824–1831

  • Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA . 1998 Cell 92: 713–723

  • Quelle DE, Zindy F, Ashmun RA, Sherr CJ . 1995 Cell 83: 993–1000

  • Reihsaus E, Kohler M, Kraiss S, Oren M, Montenarh M . 1990 Oncogene 5: 137–145

  • Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J . 1996 EMBO. J. 15: 2442–2451

  • Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG . 1999 Nat. Cell. Biol. 1: 98–105

  • Sabapathy K, Klemm M, Jaenisch R, Wagner EF . 1997 EMBO. J. 16: 6217–6229

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . 1997 Cell 88: 593–602

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G . 1998 EMBO. J. 17: 5001–5014

  • Trent JC, II, McConkey DJ, Loughlin SM, Harbison MT, Fernandez A, Ananthaswamy HN . 1996 EMBO. J. 15: 4497–4505

  • Vater CA, Bartle LM, Dionne CA, Littlewood TD, Goldmacher VS . 1996 Oncogene 13: 739–748

  • Vindelov LL, Christensen IJ, Nissen NI . 1983 Cytometry 3: 323–327

  • Wolfman JC, Wolfman A . 2000 J. Biol. Chem. 275: 19315–19323

  • Zhang Y, Xiong Y, Yarbrough WG . 1998 Cell 92: 725–734

Download references

Acknowledgements

We are grateful to the Cancer Research Campaign, the Association for International Cancer Research, the Scottish Hospital Endowment Research Trust and the Royal Society for supporting this work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, D., James, R., Patek, C. et al. Mutant K-ras enhances apoptosis in embryonic stem cells in combination with DNA damage and is associated with increased levels of p19ARF. Oncogene 20, 2144–2152 (2001). https://doi.org/10.1038/sj.onc.1204309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204309

Keywords

This article is cited by

Search

Quick links