Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Targeted gene correction by small single-stranded oligonucleotides in mammalian cells

Abstract

We demonstrate that relatively short single-stranded oligodeoxynucleotides, 25–61 bases homologous to the target sequence except for a single mismatch to the targeted base, are capable of correcting a single point mutation (G to A) in the mutant β-galactosidase gene, in nuclear extracts, episome, and chromosome of mammalian cells, with correction rates of approximately 0.05%, 1% and 0.1%, respectively. Surprisingly, these short single-stranded oligonucleotides (ODN) showed a similar gene correction frequency to chimeric RNA–DNA oligonucleotide, measured using the same system. The in vitro gene correction induced by ODN in nuclear extracts was not dependent on the length or polarity of the oligonucleotide. In contrast, the episomal and chromosomal gene corrections were highly dependent on the ODN length and polarity. ODN with a homology of 45 nucleotides showed the highest frequency and ODN with antisense orientation showed a 1000-fold higher frequency than sense orientation, indicating a possible influence of transcription on gene correction. Deoxyoligonucleotides showed a higher frequency of gene correction than ribo-oligonucleotides of the identical sequence. These results show that a relatively short ODN can make a sequence-specific change in the target sequence in mammalian cells, at a similar frequency as the chimeric RNA–DNA oligonucleotide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Havre PA, Gunther EJ, Gasparro FP, Glazer PM . Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen Proc Natl Acad Sci USA 1993 90: 7879–7883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang G, Seidman MM, Glazer PM . Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair Science 1996 271: 802–805

    Article  CAS  PubMed  Google Scholar 

  3. Chan PP et al. Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide J Biol Chem 1999 274: 11541–11548

    Article  CAS  PubMed  Google Scholar 

  4. Culver KW et al. Correction of chromosomal point mutations in human cells with bifunctional oligonucleotides Nat Biotechnol 1999 17: 989–993

    Article  CAS  PubMed  Google Scholar 

  5. Yoon K, Cole-Strauss A, Kmiec EB . Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA.DNA oligonucleotide Proc Natl Acad Sci USA 1996 93: 2071–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cole-Strauss A et al. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide (see comments) Science 1996 273: 1386–1389

    Article  CAS  PubMed  Google Scholar 

  7. Kren BT, Cole-Strauss A, Kmiec EB, Steer CJ . Targeted nucleotide exchange in the alkaline phosphatase gene of HuH-7 cells mediated by a chimeric RNA/DNA oligonucleotide Hepatology 1997 25: 1462–1468

    Article  CAS  PubMed  Google Scholar 

  8. Kren BT et al. Correction of the UDP-glucuronosyltransferase gene defect in the gunn rat model of Crigler-Najjar syndrome type I with a chimeric oligonucleotide Proc Natl Acad Sci USA 1999 96: 10349–10354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartlett RJ et al. In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide Nat Biotechnol 2000 18: 615–622

    Article  CAS  PubMed  Google Scholar 

  10. Rando TA, Disatnik MH, Zhou LZ . Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides Proc Natl Acad Sci USA 2000 97: 5363–5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santana E et al. Different frequency of gene targeting events by the RNA-DNA oligonucleotide among epithelial cells J Invest Dermatol 1998 111: 1172–1177

    Article  CAS  PubMed  Google Scholar 

  12. Beetham PR et al. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations (see comments) Proc Natl Acad Sci USA 1999 96: 8774–8778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu T et al. Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides (see comments) Proc Natl Acad Sci USA 1999 96: 8768–8773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu T et al. Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides Nat Biotechnol 2000 18: 555–558

    Article  CAS  PubMed  Google Scholar 

  15. Alexeev V, Yoon K . Stable and inheritable changes in genotype and phenotype of albino melanocytes induced by an RNA-DNA oligonucleotide (see comments) Nat Biotechnol 1998 16: 1343–1346

    Article  CAS  PubMed  Google Scholar 

  16. Alexeev V, Yoon K . Gene correction by RNA–DNA oligonucleotides Pigment Cell Res 2000 13: 72–79

    Article  CAS  PubMed  Google Scholar 

  17. Jones JT, Sullenger BA . Evaluating and enhancing ribozyme reaction efficiency in mammalian cells Nat Biotechnol 1997 15: 902–905

    Article  CAS  PubMed  Google Scholar 

  18. Lan N et al. Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors Science 1998 280: 1593–1596

    Article  CAS  PubMed  Google Scholar 

  19. Sierakowska H, Sambade MJ, Agrawal S, Kole R . Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides Proc Natl Acad Sci USA 1996 93: 12840–12844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moerschell RP, Tsunasawa S, Sherman F . Transformation of yeast with synthetic oligonucleotides Proc Natl Acad Sci USA 1988 85: 524–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamamoto T et al. Strand-specificity in the transformation of yeast with synthetic oligonucleotides Genetics 1992 131: 811–819

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goncz KK, Kunzelmann K, Xu Z, Gruenert DC . Targeted replacement of normal and mutant CFTR sequences in human airway epithelial cells using DNA fragments Hum Mol Genet 1998 7: 1913–1919

    Article  CAS  PubMed  Google Scholar 

  23. Simon JR, Moore PD . Homologous recombination between single-stranded DNA and chromosomal genes in Saccharomyces cerevisiae Mol Cell Biol 1987 7: 2329–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Campbell R et al. Homologous recombination involving small single-stranded oligonucleotides in human cells New Biol 1989 1: 223–227

    CAS  PubMed  Google Scholar 

  25. Igoucheva O, Peritz AE, Levy D, Yoon K . A sequence-specific gene correction by an RNA–DNA oligonucleotide in mammalian cells characterized by transfection and nuclear extract using a lacZ shuttle system Gene Therapy 1999 6: 1960–1971

    Article  CAS  PubMed  Google Scholar 

  26. Cupples CG, Miller JH . Effects of amino acid substitutions at the active site in Escherichia coli beta-galactosidase Genetics 1988 120: 637–644

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Z, Golub EI, Gupta R, Radding CM . Recombination activities of HsDmc1 protein, the meiotic human homolog of RecA protein Proc Natl Acad Sci USA 1997 94: 11221–11226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin FL, Sperle K, Sternberg N . Intermolecular recombination between DNAs introduced into mouse L cells is mediated by a nonconservative pathway that leads to crossover products Mol Cell Biol 1990 10: 103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Segal DJ, Carroll D . Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes (published erratum appears in Proc Natl Acad Sci USA 1995 Apr 11; 92(8): 3632) Proc Natl Acad Sci USA 1995 92: 806–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rouet P, Smih F, Jasin M . Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells Proc Natl Acad Sci USA 1994 91: 6064–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thaler DS, Liu S, Tombline G . Extending the chemistry that supports genetic information transfer in vivo: phosphorothioate DNA, phosphorothioate RNA, 2′-O-methyl RNA, and methylphosphonate DNA Proc Natl Acad Sci USA 1996 93: 1352–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamath-Loeb AS et al. Inefficient repair of RNA × DNA hybrids Eur J Biochem 1997 250: 492–501

    Article  CAS  PubMed  Google Scholar 

  33. Igoucheva O, Yoon K . Improvement of RNA-DNA oligonucleotide design by using mammalian nuclear extracts Gene Ther Regul 2000 1: 165–177

    Article  CAS  Google Scholar 

  34. Gamper HB et al. A plausible mechanism for gene correction by chimeric oligonucleotides Biochemistry 2000 39: 5808–5816

    Article  CAS  PubMed  Google Scholar 

  35. Cole-Strauss A et al. Targeted gene repair directed by a chimeric RNA/DNA oligonucleotide in a mammalian cell-free extract Nucleic Acids Res 1999 27: 1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Daniels GA, Lieber MR . Strand specificity in the transcriptional targeting of recombination at immunoglobulin switch sequences Proc Natl Acad Sci USA 1995 92: 5625–5629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Derr LK, Strathern JN . A role for reverse transcripts in gene conversion Nature 1993 361: 170–173

    Article  CAS  PubMed  Google Scholar 

  38. Mellon I, Spivak G, Hanawalt PC . Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene Cell 1987 51: 241–249

    Article  CAS  PubMed  Google Scholar 

  39. Bootsma D, Hoeijmakers JH . DNA repair. Engagement with transcription (news; comment) Nature 1993 363: 114–115

    Article  CAS  PubMed  Google Scholar 

  40. Modrich P, Lahue R . Mismatch repair in replication fidelity, genetic recombination, and cancer biology Annu Rev Biochem 1996 65: 101–133

    Article  CAS  PubMed  Google Scholar 

  41. Leung W, Malkova A, Haber JE . Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction Proc Natl Acad Sci USA 1997 94: 6851–6856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gamper HB et al. The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts Nucleic Acids Res 2000 28: 4332–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr Stephen Tutton for his technical support. This work was supported in part by grants from the National Institute of Arthritis, Musculoskeletal and Skin Diseases (P0 AR38923 and R0 AR44350) to KY and the Dermatology Foundation fellowship to VA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igoucheva, O., Alexeev, V. & Yoon, K. Targeted gene correction by small single-stranded oligonucleotides in mammalian cells. Gene Ther 8, 391–399 (2001). https://doi.org/10.1038/sj.gt.3301414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301414

Keywords

This article is cited by

Search

Quick links