Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Genome-wide search for sarcoidosis susceptibility genes in African Americans

Abstract

Sarcoidosis, a systemic granulomatous disease of unknown etiology, likely results from an environmental insult in a genetically susceptible host. In the US, African Americans are more commonly affected with sarcoidosis and suffer greater morbidity than Caucasians. We searched for sarcoidosis susceptibility loci by conducting a genome-wide, sib pair multipoint linkage analysis in 229 African-American families ascertained through two or more sibs with a history of sarcoidosis. Using the Haseman–Elston regression technique, linkage peaks with P-values less than 0.05 were identified on chromosomes 1p22, 2p25, 5p15-13, 5q11, 5q35, 9q34, 11p15 and 20q13 with the most prominent peak at D5S2500 on chromosome 5q11 (P=0.0005). We found agreement for linkage with the previously reported genome scan of a German population at chromosomes 1p and 9q. Based on the multiple suggestive regions for linkage found in our study population, it is likely that more than one gene influences sarcoidosis susceptibility in African Americans. Fine mapping of the linked regions, particularly on chromosome 5q, should help to refine linkage signals and guide further sarcoidosis candidate gene investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bresnitz EA, Strom BL . Epidemiology of sarcoidosis. Epidemiol Rev 1983; 5: 124–156.

    Article  CAS  Google Scholar 

  2. Mangiapan G, Hance AJ . Mycobacteria and sarcoidosis: an overview and summary of recent molecular biological data. Sarcoidosis 1995; 12: 20–37.

    CAS  PubMed  Google Scholar 

  3. Ishige I, Usui Y, Takemura T, Eishi Y . Quantitative PCR of mycobacterial and propionibacterial DNA in lymph nodes of Japanese patients with sarcoidosis. Lancet 1999; 354: 120–123.

    Article  CAS  Google Scholar 

  4. Buck AA . Epidemiologic investigations of sarcoidosis. I. Introduction; material and methods. Am J Hyg 1961; 74: 137–151.

    CAS  PubMed  Google Scholar 

  5. Terris M, Chaves AD . An epidemiologic study of sarcoidosis. Am Rev Resp Dis 1966; 94: 50–55.

    CAS  PubMed  Google Scholar 

  6. Gentry JT, Nitowsky HM, Michael Jr M . Studies on the epidemiology of sarcoidosis in the United States: the relationship to soil areas and to urban–rural residence. J Clin Invest 1955; 34: 1839–1856.

    Article  CAS  Google Scholar 

  7. Buck AA . Epidemiologic investigations of sarcoidosis. IV. Discussion and summary. Am J Hyg 1961; 74: 189–202.

    CAS  PubMed  Google Scholar 

  8. Maliarik MJ, Chen KM, Major ML et al. Analysis of HLA-DPB1 polymorphisms in African-Americans with sarcoidosis. Am J Resp Crit Care Med 1998; 158: 111–114.

    Article  CAS  Google Scholar 

  9. Rybicki BA, Major M, Popovich Jr J, Maliarik MJ, Iannuzzi MC . Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization. Am J Epidemiol 1997; 145: 234–241.

    Article  CAS  Google Scholar 

  10. Rybicki BA, Iannuzzi MC, Frederick MM et al. Familial aggregation of sarcoidosis. A case–control etiologic study of sarcoidosis (ACCESS). Am J Respir Crit Care Med 2001; 164: 2085–2091.

    Article  CAS  Google Scholar 

  11. Iannuzzi MC . Genetics of sarcoidosis. Monaldi Arch Chest Dis 1998; 53: 609–613.

    CAS  PubMed  Google Scholar 

  12. McGrath DS, Daniil Z, Foley P et al. Epidemiology of familial sarcoidosis in the UK. Thorax 2000; 55: 751–754.

    Article  CAS  Google Scholar 

  13. Rybicki BA, Kirkey KL, Major M et al. Familial risk ratio of sarcoidosis in African-American sibs and parents. Am J Epidemiol 2001; 153: 188–193.

    Article  CAS  Google Scholar 

  14. Schurmann M, Reichel P, Muller-Myhsok B, Schlaak M, Muller-Quernheim J, Schwinger E . Results from a genome-wide search for predisposing genes in sarcoidosis. Am J Resp Crit Care Med 2001; 164: 840–846.

    Article  CAS  Google Scholar 

  15. Foley PJ, Lympany PA, Puscinska E, Zielinski J, Welsh KI, du Bois RM . Analysis of MHC encoded antigen-processing genes TAP1 and TAP2 polymorphisms in sarcoidosis. Am J Resp Crit Care Med 1999; 160: 1009–1014.

    Article  CAS  Google Scholar 

  16. Iannuzzi MC, Maliarik MJ, Poisson LM, Rybicki BA . Sarcoidosis susceptibility and resistance HLA-DQB1 alleles in African Americans. Am J Resp Crit Care Med 2003; 167: 1225–1231.

    Article  Google Scholar 

  17. Pandey JP, Frederick M . TNF-alpha, IL1-beta, and immunoglobulin (GM and KM) gene polymorphisms in sarcoidosis. Hum Immunol 2002; 63: 485–491.

    Article  CAS  Google Scholar 

  18. Rossman MD, Thompson B, Frederick M et al. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet 2003; 73: 720–735.

    Article  CAS  Google Scholar 

  19. Rybicki BA, Maliarik MJ, Poisson LM et al. The major histocompatibility complex gene region and sarcoidosis susceptibility in African Americans. Am J Resp Crit Care Med 2003; 167: 444–449.

    Article  Google Scholar 

  20. Foley PJ, McGrath DS, Puscinska E et al. Human leukocyte antigen-DRB1 position 11 residues are a common protective marker for sarcoidosis. Am J Resp Cell Mol Biol 2001; 25: 272–277.

    Article  CAS  Google Scholar 

  21. Gideon NM, Mannino DM . Sarcoidosis mortality in the United States 1979–1991: an analysis of multiple-cause mortality data. Am J Med 1996; 100: 423–427.

    Article  CAS  Google Scholar 

  22. Baughman RP, Teirstein AS, Judson MA et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Resp Crit Care Med 2001; 164: 1885–1889.

    Article  CAS  Google Scholar 

  23. Schurmann M, Lympany PA, Reichel P et al. Familial sarcoidosis is linked to the major histocompatibility complex region. Am J Resp Crit Care Med 2000; 162: 861–864.

    Article  CAS  Google Scholar 

  24. Haseman JK, Elston RC . The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 1972; 2: 3–19.

    Article  CAS  Google Scholar 

  25. Elston RC, Song D, Iyengar SK . Mathematical assumptions versus biological reality: myths in affected sib pair linkage analysis. Am J Hum Genet 2005; 76: 152–156.

    Article  CAS  Google Scholar 

  26. Moller DR . Cells and cytokines involved in the pathogenesis of sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 1999; 16: 24–31.

    CAS  PubMed  Google Scholar 

  27. Moller DR, Chen ES . What causes sarcoidosis? Curr Opin Pulm Med 2002; 8: 429–434.

    Article  Google Scholar 

  28. Agostini C, Adami F, Semenzato G . New pathogenetic insights into the sarcoid granuloma. Curr Opin Rheumatol 2000; 12: 71–76.

    Article  CAS  Google Scholar 

  29. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F . Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374: 1–20.

    Article  CAS  Google Scholar 

  30. Takizawa H, Satoh M, Okazaki H et al. Increased IL-6 and IL-8 in bronchoalveolar lavage fluids (BALF) from patients with sarcoidosis: correlation with the clinical parameters. Clin Exp Immunol 1997; 107: 175–181.

    Article  CAS  Google Scholar 

  31. Ishioka S, Saito T, Hiyama K et al. Increased expression of tumor necrosis factor-alpha, interleukin-6, platelet-derived growth factor-B and granulocyte-macrophage colony-stimulating factor mRNA in cells of bronchoalveolar lavage fluids from patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 1996; 13: 139–145.

    CAS  PubMed  Google Scholar 

  32. Girgis RE, Basha MA, Maliarik M, Popovich Jr J, Iannuzzi MC . Cytokines in the bronchoalveolar lavage fluid of patients with active pulmonary sarcoidosis. Am J Resp Crit Care Med 1995; 152: 71–75.

    Article  CAS  Google Scholar 

  33. Tunkel AR, Sebastianelli KJ, Pandit N, Brody JI . Development of 5q-myelodysplasia in a patient with sarcoidosis. Am J Hematol 1990; 34: 225–227.

    Article  CAS  Google Scholar 

  34. Airaghi L, Montori D, Zorzi F, Miadonna A, Tedeschi A . Sarcoidosis in a patient with 5q-myelodysplasia. A possible pathogenetic link between the two diseases. Monaldi Arch Chest Dis 2000; 55: 378–380.

    CAS  PubMed  Google Scholar 

  35. Schurmann M, Valentonyte R, Hampe J, Muller-Quernheim J, Schwinger E, Schreiber S . CARD15 gene mutations in sarcoidosis. Eur Resp J 2003; 22: 748–754.

    Article  CAS  Google Scholar 

  36. Fellermann K, Stahl M, Dahlhoff K, Amthor M, Ludwig D, Stange EF . Crohn's disease and sarcoidosis: systemic granulomatosis? Eur J Gastroenterol Hepatol 1997; 9: 1121–1124.

    Article  CAS  Google Scholar 

  37. Giallourakis C, Stoll M, Miller K et al. IBD5 is a general risk factor for inflammatory bowel disease: replication of association with Crohn disease and identification of a novel association with ulcerative colitis. Am J Hum Genet 2003; 73: 205–211.

    Article  CAS  Google Scholar 

  38. Hugot JP, Laurent-Puig P, Gower-Rousseau C et al. Mapping of a susceptibility locus for Crohn's disease on chromosome 16. Nature 1996; 379: 821–823.

    Article  CAS  Google Scholar 

  39. Hampe J, Cuthbert A, Croucher PJ et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 2001; 357: 1925–1928.

    Article  CAS  Google Scholar 

  40. Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411: 599–603.

    Article  CAS  Google Scholar 

  41. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–606.

    Article  CAS  Google Scholar 

  42. Rybicki BA, Maliarik MJ, Bock CH et al. The Blau syndrome gene is not a major risk factor for sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 1999; 16: 203–208.

    CAS  PubMed  Google Scholar 

  43. Rybicki B, Maliarik M, Poisson L, Iannuzzi M . Sarcoidosis and granuloma genes: a family based study in African Americans. Eur Resp J 2004; 24: 251–257.

    Article  CAS  Google Scholar 

  44. Maliarik MJ, Rybicki BA, Malvitz E et al. Angiotensin-converting enzyme gene polymorphism and risk of sarcoidosis. Am J Resp Crit Care Med 1998; 158: 1566–1570.

    Article  CAS  Google Scholar 

  45. Niimi T, Tomita H, Sato S et al. Vitamin D receptor gene polymorphism in patients with sarcoidosis. Am J Resp Crit Care Med 1999; 160: 1107–1109.

    Article  CAS  Google Scholar 

  46. Grutters JC, Sato H, Pantelidis P et al. Increased frequency of the uncommon tumor necrosis factor −857T allele in British and Dutch patients with sarcoidosis. Am J Resp Crit Care Med 2002; 165: 1119–1124.

    Article  Google Scholar 

  47. Wiltshire S, Cardon LR, McCarthy MI . Evaluating the results of genomewide linkage scans of complex traits by locus counting. Am J Hum Genet 2002; 71: 1175–1182.

    Article  CAS  Google Scholar 

  48. Elston RC, Guo X, Williams LV . Two-stage global search designs for linkage analysis using pairs of affected relatives. Genet Epidemiol 1996; 13: 535–558.

    Article  CAS  Google Scholar 

  49. McKeigue PM, Carpenter JR, Parra EJ, Shriver MD . Estimation of admixture and detection of linkage in admixed populations by a Bayesian approach: application to African-American populations. Ann Hum Genet 2000; 64: 171–186.

    Article  CAS  Google Scholar 

  50. Parra EJ, Marcini A, Akey J et al. Estimating African American admixture proportions by use of population-specific alleles. Am J Hum Genet 1998; 63: 1839–1851.

    Article  CAS  Google Scholar 

  51. Miller SA, Dykes DD, Polesky HF . A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.

    Article  CAS  Google Scholar 

  52. S.A.G.E. Statistical Analysis for Genetic Epidemiology. Release 5.0.

  53. Elston RC, Stewart J . A general model for the genetic analysis of pedigree data. Hum Hered 1971; 21: 523–542.

    Article  CAS  Google Scholar 

  54. Olson JM . Relationship estimation by Markov-process models in a sib-pair linkage study. Am J Hum Genet 1999; 64: 1464–1472.

    Article  CAS  Google Scholar 

  55. Shete S, Jacobs KB, Elston RC . Adding further power to the Haseman and Elston method for detecting linkage in larger sibships: weighting sums and differences. Hum Hered 2003; 55: 79–85.

    Article  Google Scholar 

Download references

Acknowledgements

We thank all family members who participated in our study. This work was supported by National Institutes of Health Grants UO1 HL060263, RO1 GM28356 and P41 RR003655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Iannuzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iannuzzi, M., Iyengar, S., Gray-McGuire, C. et al. Genome-wide search for sarcoidosis susceptibility genes in African Americans. Genes Immun 6, 509–518 (2005). https://doi.org/10.1038/sj.gene.6364235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364235

Keywords

This article is cited by

Search

Quick links