Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes

A Publisher Correction to this article was published on 16 October 2018

This article has been updated

Abstract

Tuberculosis is a significant global health threat, with one-third of the world’s population infected with its causative agent Mycobacterium tuberculosis (Mtb). The emergence of multidrug-resistant (MDR) Mtb that is resistant to the frontline anti-tubercular drugs rifampicin and isoniazid forces treatment with toxic second-line drugs. Currently, ~4% of new and ~21% of previously treated tuberculosis cases are either rifampicin-drug-resistant or MDR Mtb infections1. The specific molecular host–pathogen interactions mediating the rapid worldwide spread of MDR Mtb strains remain poorly understood. W-Beijing Mtb strains are highly prevalent throughout the world and associated with increased drug resistance2. In the early 1990s, closely related MDR W-Beijing Mtb strains (W strains) were identified in large institutional outbreaks in New York City and caused high mortality rates3. The production of interleukin-1β (IL-1β) by macrophages coincides with the shift towards aerobic glycolysis, a metabolic process that mediates protection against drug-susceptible Mtb4. Here, using a collection of MDR W-Mtb strains, we demonstrate that the overexpression of Mtb cell wall lipids, phthiocerol dimycocerosates, bypasses the interleukin 1 receptor, type I (IL-1R1) signalling pathway, instead driving the induction of interferon-β (IFN-β) to reprogram macrophage metabolism. Importantly, Mtb carrying a drug resistance-conferring single nucleotide polymorphism in rpoB (H445Y)5 can modulate host macrophage metabolic reprogramming. These findings transform our mechanistic understanding of how emerging MDR Mtb strains may acquire drug resistance single nucleotide polymorphisms, thereby altering Mtb surface lipid expression and modulating host macrophage metabolic reprogramming.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IL-1R1 is dispensable for protective immunity against W_7642.
Fig. 2: W_7642 infection induces the type I IFN pathway and distinctive host macrophage metabolism.
Fig. 3: Identification of unique SNPs in rpoB of MDR Mtb strains that alter macrophage reprogramming.
Fig. 4: W-Beijing Mtb strains carrying the rpoB-H445Y SNP overexpress PDIM and bypass the IL-1R1 signalling pathway for protective immunity.

Similar content being viewed by others

Data availability

All relevant data are available from the authors. DNA sequencing data have been submitted under BioProject ID PRJNA353361. RNA sequencing data have been deposited in the Gene Expression Omnibus (GEO) database (accession number GSE115495).

Change history

  • 16 October 2018

    In the version of this Letter originally published, in Fig. 2d, in the third graph, the label for the y axis was incorrect as ‘TNF-α (pg ml–1)’; it should have read ‘IL-1β (pg ml–1)’. This has now been corrected.

References

  1. Global Tuberculosis Report 2015 WHO/HTM/TB/2015.22 (WHO, 2015).

  2. Bifani, P. J., Mathema, B., Kurepina, N. E. & Kreiswirth, B. N. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol. 10, 45–52 (2002).

    Article  CAS  Google Scholar 

  3. Bifani, P. J. et al. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 275, 452–457 (1996).

    Article  CAS  Google Scholar 

  4. Gleeson, L. E. et al. Cutting Edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J. Immunol. 196, 2444–2449 (2016).

    Article  CAS  Google Scholar 

  5. Goldstein, B. P. Resistance to rifampicin: a review. J. Antibiot. 67, 625–630 (2014).

    Article  CAS  Google Scholar 

  6. Cooper, A. M. et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

    Article  CAS  Google Scholar 

  7. Flynn, J. L. et al. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2, 561–572 (1995).

    Article  CAS  Google Scholar 

  8. MacMicking, J. D. et al. Indentification of NOS2 as a protective locus against tuberculosis. Proc. Natl Acad. Sci. USA 94, 5243–5248 (1997).

    Article  CAS  Google Scholar 

  9. Juffermans, N. P. et al. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J. Infect. Dis. 182, 902–908 (2000).

    Article  CAS  Google Scholar 

  10. Scanga, C. A. et al. MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect. Immun. 72, 2400–2404 (2004).

    Article  CAS  Google Scholar 

  11. Manca, C. et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. Proc. Natl Acad. Sci. USA 98, 5752–5757 (2001).

    Article  CAS  Google Scholar 

  12. Desvignes, L., Wolf, A. J. & Ernst, J. D. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J. Immunol. 188, 6205–6215 (2012).

    Article  CAS  Google Scholar 

  13. Redford, P. S. et al. Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. Eur. J. Immunol. 40, 2200–2210 (2010).

    Article  CAS  Google Scholar 

  14. Lachmandas, E. et al. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur. J. Immunol. 46, 2574–2586 (2016).

    Article  CAS  Google Scholar 

  15. Watson, R. O. et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17, 811–819 (2015).

    Article  CAS  Google Scholar 

  16. Huang, L., Nazarova, E. V., Tan, S., Liu, Y. & Russell, D. G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215, 1135–1152 (2018).

    Article  CAS  Google Scholar 

  17. O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).

    Article  Google Scholar 

  18. Noy, T. et al. Central role of pyruvate kinase in carbon co-catabolism of Mycobacterium tuberculosis. J. Biol. Chem. 291, 7060–7069 (2016).

    Article  CAS  Google Scholar 

  19. Bisson, G. P. et al. Upregulation of the phthiocerol dimycocerosate biosynthetic pathway by rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. J. Bacteriol. 194, 6441–6452 (2012).

    Article  CAS  Google Scholar 

  20. de Knegt, G. J. et al. Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis 93, 96–101 (2013).

    Article  Google Scholar 

  21. Lahiri, N. et al. Rifampin resistance mutations are associated with broad chemical remodeling of Mycobacterium tuberculosis. J. Biol. Chem. 291, 14248–14256 (2016).

    Article  CAS  Google Scholar 

  22. Molodtsov, V., Scharf, N. T., Stefan, M. A., Garcia, G. A. & Murakami, K. S. Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis. Mol. Microbiol. 103, 1034–1045 (2017).

    Article  CAS  Google Scholar 

  23. Barczak, A. K. et al. Systematic, multiparametric analysis of Mycobacterium tuberculosis intracellular infection offers insight into coordinated virulence. PLoS Pathog. 13, e1006363 (2017).

    Article  Google Scholar 

  24. Quigley, J. et al. The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis. mBio 8, e00148-17 (2017).

    Article  Google Scholar 

  25. Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511, 99–103, (2014).

    Article  CAS  Google Scholar 

  26. Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

    Article  CAS  Google Scholar 

  27. Hewelt-Belka, W. et al. Untargeted lipidomics reveals differences in the lipid pattern among clinical isolates of Staphylococcus aureus resistant and sensitive to antibiotics. J. Proteome Res. 15, 914–922 (2016).

    Article  CAS  Google Scholar 

  28. Kidd, T. J. et al. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol. Med. 9, 430–447 (2017).

    Article  CAS  Google Scholar 

  29. Mishra, N. N. et al. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PLoS ONE 7, e43958 (2012).

    Article  CAS  Google Scholar 

  30. Enright, M., Zawadski, P., Pickerill, P. & Dowson, C. G. Molecular evolution of rifampicin resistance in Streptococcus pneumoniae. Microb. Drug Resist. 4, 65–70 (1998).

    Article  CAS  Google Scholar 

  31. Khader, S. A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4 + T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8, 369–377 (2007).

    Article  CAS  Google Scholar 

  32. Ford, C. B. et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784–790 (2013).

    Article  CAS  Google Scholar 

  33. Young, L., Sung, J., Stacey, G. & Masters, J. R. Detection of Mycoplasma in cell cultures. Nat. Protoc. 5, 929–934 (2010).

    Article  Google Scholar 

  34. Treerat, P. et al. Novel role for IL-22 in protection during chronic Mycobacterium tuberculosis HN878 infection. Mucosal Immunol. 10, 1069–1081 (2017).

    Article  CAS  Google Scholar 

  35. van Soolingen, D., Hermans, P. W., de Haas, P. E., Soll, D. R. & van Embden, J. D. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J. Clin. Microbiol. 29, 2578–2586 (1991).

    PubMed  PubMed Central  Google Scholar 

  36. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  37. Olson, N. D. et al. Best practices for evaluating single nucleotide variant calling methods for microbial genomics. Front. Genet. 6, 235 (2015).

    Article  Google Scholar 

  38. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  39. Hutter, S., Vilella, A. J. & Rozas, J. Genome-wide DNA polymorphism analyses using VariScan. BMC Bioinform. 7, 409 (2006).

    Article  Google Scholar 

  40. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article  CAS  Google Scholar 

  41. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  Google Scholar 

  42. Rogerson, B. J. et al. Expression levels of Mycobacterium tuberculosis antigen-encoding genes versus production levels of antigen-specific T cells during stationary level lung infection in mice. Immunology 118, 195–201 (2006).

    Article  CAS  Google Scholar 

  43. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  Google Scholar 

  44. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  45. Sergushichev, A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. Preprint at bioRxiv https://doi.org/10.1101/060012 (2016).

  46. Huang, S. C.-C. et al. Cell-intrinsic lysosomal lipolysis is essential for macrophage alternative activation. Nat. Immunol. 15, 846–855 (2014).

    Article  CAS  Google Scholar 

  47. McCarthy Travis, R. et al. Overexpression of Mycobacterium tuberculosis manB, a phosphomannomutase that increases phosphatidylinositol mannoside biosynthesis in Mycobacterium smegmatis and mycobacterial association with human macrophages. Mol. Microbiol. 58, 774–790 (2005).

    Article  CAS  Google Scholar 

  48. Torrelles, J. B. et al. Truncated structural variants of lipoarabinomannan in Mycobacterium leprae and an ethambutol-resistant strain of Mycobacterium tuberculosis. J. Biol. Chem. 279, 41227–41239 (2004).

    Article  CAS  Google Scholar 

  49. Flentie, K. N., Stallings, C. L., Turk, J., Minnaard, A. J. & Hsu, F.-F. Characterization of phthiocerol and phthiodiolone dimycocerosate esters of M. tuberculosis by multiple-stage linear ion-trap MS. J. Lipid Res. 57, 142–155 (2016).

    Article  CAS  Google Scholar 

  50. Torrelles, J. B. et al. Identification of Mycobacterium tuberculosis clinical isolates with altered phagocytosis by human macrophages due to a truncated lipoarabinomannan. J. Biol. Chem. 283, 31417–31428 (2008).

    Article  CAS  Google Scholar 

  51. Slayden, R. A. & Barry, C. E. 3rd Analysis of the Lipids of Mycobacterium tuberculosis. Methods Mol. Med. 54, 229–245 (2001).

    CAS  PubMed  Google Scholar 

  52. Torrelles, J. B., Azad, A. K. & Schlesinger, L. S. Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J. Immunol. 177, 1805–1816 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Washington University in St. Louis; NIH grants HL105427, AI123780 and AI111914 to S.A.K. and NIH/NHLBI T32 HL007317-37 to N.C.H. A.S. was supported by the Ministry of Education and Science of the Russian Federation (Project 2.3300.2017/4.6). J.R.-M. was supported by funds from the Department of Medicine, University of Rochester and U19 AI91036. The protein identifications and LC/MS analyses were generated at the Washington University Proteomics Shared Resource (WU-PSR). The WU-PSR is supported by the WU Institute of Clinical and Translational Sciences (grant no. NCATS UL1 TR000448), the WU Mass Spectrometry Research Resource (grant nos. NIGMS P41 GM103422, P60-DK-20579, P30-DK56341) and the Siteman Comprehensive Cancer Center (grant no. NCI P30 CA091842). The authors thank L. Schuettpelz (Washington University in St. Louis), U. Nagarajan (University of North Carolina, Chapel Hill), J.H. Russell (Washington University in St. Louis) and H.W. Virgin IV (Washington University in St. Louis) for generously providing mice, J.M. Scordo (Texas Biomed) and R. Domingo-Gonzalez (Washington University in St. Louis) for technical help and S. Squires and L. Lu (Washington University in St. Louis) for animal breeding. We thank T. Stappenbeck and J. Phillips (Washington University in St. Louis) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N.C.H., B.M., R.S.K., M.N.A., G.K.A. and S.A.K. conceived the experiments. N.C.H., N.D.M., M.A., B.A.R., J.M., M.B., A.S., E.L., N.K., J.R-M., J.B.T., F.-F.H. and J.-M.B.-L. carried out the experiments. L.C., B.N.K., B.M., S.A.K., M.N.A., R.S.K., J.B.T. provided reagents and Mtb strains. N.C.H., N.D.M., M.A., B.A.R., J.M., M.B., A.S., E.L., N.K., J.R.-M., J.B.T., F.-F.H., M.M., M.N.A., B.M. and S.A.K. conducted the analyses. N.C.H. and S.A.K. wrote the paper. All the authors edited the paper and S.A.K. provided funding and overall project supervision and administration.

Corresponding author

Correspondence to Shabaana A. Khader.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13 and Supplementary Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howard, N.C., Marin, N.D., Ahmed, M. et al. Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nat Microbiol 3, 1099–1108 (2018). https://doi.org/10.1038/s41564-018-0245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0245-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing