Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anoxic chemical weathering under a reducing greenhouse on early Mars

Abstract

Reduced greenhouse gases such as methane (CH4) and hydrogen (H2) might be the only tenable solution to explain warming of the ancient Martian climate, but direct geological evidence that a reduced atmosphere actually existed on Mars has been lacking. Here we report widespread, strong Fe loss in chemically weathered bedrock sections in the Mawrth Vallis region and other 3–4-billion-year-old terrains on Mars. The separation of Fe from Al in Martian palaeosols, which is comparable to trends observed in palaeosols before the Great Oxidation Event on Earth, suggests that the ancient Martian surface was chemically weathered under a reducing greenhouse atmosphere. Although for different reasons than on Earth, Mars underwent an oxidation event of its own in the late Noachian that forever changed the geological path of the planet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spectral indices applied to weathered bedrock on Mars.
Fig. 2: Spectroscopic indices applied to weathering trends on the Earth and Mars.
Fig. 3: Evidence for iron loss in weathered surfaces on a global scale on Mars.
Fig. 4: HiRISE and CRISM spectral parameters of iron in minerals and rocks.
Fig. 5: Comparison between blue tones in a HiRISE IRB image and CRISM spectral parameters.
Fig. 6: Similar Fe3+ distribution patterns in early Martian and terrestrial Archaean weathering sequences.
Fig. 7: Ancient weathering processes and atmospheric evolution on Mars.

Similar content being viewed by others

Data availability

Data required to complete this work include: (1) hyperspectral image cubes from CRISM; (2) high-resolution colour images and digital elevation information from HiRISE; (3) regional images from the Mars Orbiter Camera; (4) reference spectra from the CAT_ENVI and ASD spectral libraries; and (5) spectral parameters and Fe concentration of Hainan basaltic weathering products. All remote sensing data used in this work are available through the Planetary Data System (https://pds.nasa.gov). Other planetary datasets are available within the JMARS software provided by Arizona State University (https://jmars.asu.edu).

Code availability

The software used to process the CRISM data is available through the Planetary Data System (https://pds.nasa.gov). Other visualization capabilities are available within the JMARS software provided by Arizona State University (https://jmars.asu.edu).

References

  1. Ramirez, R. M. et al. Warming early Mars with CO2 and H2. Nat. Geosci. 7, 59–63 (2014).

    Article  ADS  Google Scholar 

  2. Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).

    Article  ADS  Google Scholar 

  3. Sholes, S. F., Smith, M. L., Claire, M. W., Zahnle, K. J. & Catling, D. C. Anoxic atmospheres on Mars driven by volcanism: implications for past environments and life. Icarus 290, 46–62 (2017).

    Article  ADS  Google Scholar 

  4. Tarnas, J. D. et al. Radiolytic H2 production on Noachian Mars: implications for habitability and atmospheric warming. Earth Planet. Sci. Lett. 502, 133–145 (2018).

    Article  ADS  Google Scholar 

  5. Tosca, N. J., Ahmed, I. A. M., Tutolo, B. M., Ashpitel, A. & Hurowitz, J. A. Magnetite authigenesis and the warming of early Mars. Nat. Geosci. 11, 635–639 (2018).

    Article  ADS  Google Scholar 

  6. Oze, C. & Sharma, M. Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32, L10203 (2005).

    Article  ADS  Google Scholar 

  7. Haberle, R. M., Zahnle, K., Barlow, N. G. & Steakley, K. E. Impact degassing of H2 on early Mars and its effect on the climate system. Geophys. Res. Lett. 46, 13355–13362 (2019).

    Article  ADS  Google Scholar 

  8. Kite, E. S. et al. Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars. Nat. Geosci. 10, 737–740 (2017).

    Article  ADS  Google Scholar 

  9. Mitra, K. & Catalano, J. G. Chlorate as a potential oxidant on Mars: rates and products of dissolved Fe(II) oxidation. J. Geophys. Res. Planets 124, 2893–2916 (2019).

    Article  ADS  Google Scholar 

  10. Chemtob, S. M., Nickerson, R. D., Morris, R. V., Agresti, D. G. & Catalano, J. G. Oxidative alteration of ferrous smectites and implications for the redox evolution of early Mars. J. Geophys. Res. Planets 12, 2469–2488 (2017).

    Article  ADS  Google Scholar 

  11. Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci. 298, 621–672 (1998).

    Article  ADS  Google Scholar 

  12. Liu, J. C. et al. Reflectance spectroscopy applied to clay mineralogy and alteration intensity of a thick basaltic weathering sequence in Hainan Island, South China. Appl. Clay Sci. https://doi.org/10.1016/j.clay.2020.105923 (2020).

  13. Loizeau, D. et al. Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM. Icarus 205, 396–418 (2010).

    Article  ADS  Google Scholar 

  14. McKeown, N. K. et al. Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. J. Geophys. Res. 114, E00D10 (2009).

    Google Scholar 

  15. Greenberger, R. N. et al. Low temperature aqueous alteration of basalt: mineral assemblages of Deccan basalts and implications for Mars. J. Geophys. Res. Planets 117, E00J12 (2012).

    Article  Google Scholar 

  16. Carter, J., Loizeau, D., Mangold, N., Poulet, F. & Bibring, J.-P. Widespread surface weathering on early Mars: a case for a warmer and wetter climate. Icarus 248, 373–382 (2015).

    Article  ADS  Google Scholar 

  17. Noe Dobrea, E. Z. et al. Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: constraints on geological origin. J. Geophys. Res. 115, E00D19 (2010).

    Google Scholar 

  18. Bishop, J. L. et al. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars. Nat. Astron. 2, 206–213 (2018).

    Article  ADS  Google Scholar 

  19. Poulet, F. et al. Mawrth Vallis, Mars: a fascinating place for future in situ exploration. Astrobiology 20, 199–234 (2020).

    Article  ADS  Google Scholar 

  20. Bishop, J. L. et al. Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on early Mars. Icarus 341, 113634 (2020).

    Article  Google Scholar 

  21. Bishop, J. L. et al. Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 321, 830–833 (2008).

    Article  ADS  Google Scholar 

  22. Bishop, J. L. et al. What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planet. Space Sci. 86, 130–149 (2013).

    Article  ADS  Google Scholar 

  23. Michalski, J. R. et al. The Mawrth Vallis region of Mars: a potential landing site for the Mars Science Laboratory (MSL) mission. Astrobiology 10, 687–703 (2010).

    Article  ADS  Google Scholar 

  24. Wray, J. J., Ehlmann, B. L., Squyres, S. W., Mustard, J. F. & Kirk, R. L. Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys. Res. Lett. 35, L12202 (2008).

    Article  ADS  Google Scholar 

  25. Lowe, D. R., Bishop, J. L., Loizeau, D., Wray, J. J. & Beyer, R. A. Deposition of >3.7 Ga clay-rich strata of the Mawrth Vallis Group, Mars, in lacustrine, alluvial, and aeolian environments. GSA Bull. 132, 17–30 (2020).

    Article  Google Scholar 

  26. Dundas, C. M. et al. Exposed subsurface ice sheets in the Martian mid-latitudes. Science 359, 199–201 (2018).

    Article  ADS  Google Scholar 

  27. Delamere, W. A. et al. Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE). Icarus 205, 38–52 (2010).

    Article  ADS  Google Scholar 

  28. Tornabene, L. L. et al. Image simulation and assessment of the colour and spatial capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter. Space Sci. Rev. 214, 18 (2018).

    Article  ADS  Google Scholar 

  29. Hurowitz, J. A. et al. In situ and experimental evidence for acidic weathering of rocks and soils on Mars. J. Geophys. Res. Planets 111, E02S19 (2006).

    Article  Google Scholar 

  30. Golombek, M. P. et al. Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. 111, E12S10 (2006).

    ADS  Google Scholar 

  31. Michalski, J. R., Dobrea, E. Z. N., Niles, P. B. & Cuadros, J. Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat. Commun. 8, 15978 (2017).

    Article  ADS  Google Scholar 

  32. Michalski, J. R. et al. The geology and astrobiology of McLaughlin Crater, Mars: an ancient lacustrine basin containing turbidites, mudstones, and serpentinites. J. Geophys. Res. Planets 124, 910–940 (2019).

    Article  ADS  Google Scholar 

  33. Dehouck, E., Gaudin, A., Chevrier, V. & Mangold, N. Mineralogical record of the redox conditions on early Mars. Icarus 271, 67–75 (2016).

    Article  ADS  Google Scholar 

  34. Hurowitz, J. A. & McLennan, S. M. A ~3.5 Ga record of water-limited, acidic weathering conditions on Mars. Earth Planet. Sci. Lett. 260, 432–443 (2007).

    Article  ADS  Google Scholar 

  35. Hurowitz, J. A., Fischer, W. W., Tosca, N. J. & Milliken, R. E. Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nat. Geosci. 3, 323–326 (2010).

    Article  ADS  Google Scholar 

  36. Carter, J., Poulet, F., Bibring, J. P., Mangold, N. & Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. Planets 118, 831–858 (2013).

    Article  ADS  Google Scholar 

  37. Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014).

    Article  ADS  Google Scholar 

  38. Michalski, J. R. et al. Constraints on the crystal-chemistry of Fe/Mg-rich smectitic clays on Mars and links to global alteration trends. Earth Planet. Sci. Lett. 427, 215–225 (2015).

    Article  ADS  Google Scholar 

  39. Catalano, J. G. Thermodynamic and mass balance constraints on iron-bearing phyllosilicate formation and alteration pathways on early Mars. J. Geophys. Res. Planets 118, 2124–2136 (2013).

    Article  ADS  Google Scholar 

  40. Michalski, J. R. et al. Shock metamorphism of clay minerals on Mars by meteor impact. Geophys. Res. Lett. 44, 6562–6569 (2017).

    Article  ADS  Google Scholar 

  41. Jakosky, B. M. et al. Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315, 146–157 (2018).

    Article  ADS  Google Scholar 

  42. Carrier, B. L. & Kounaves, S. P. The origins of perchlorate in the Martian soil. Geophys. Res. Lett. 42, 3739–3745 (2015).

    Article  ADS  Google Scholar 

  43. Michalski, J. R. et al. The Martian subsurface as a potential window into the origin of life. Nat. Geosci. 11, 21–26 (2018).

    Article  ADS  Google Scholar 

  44. He, Y. et al. Clay minerals in a soil chronosequence derived from basalt on Hainan Island, China and its implication for pedogenesis. Geoderma 148, 206–212 (2008).

    Article  ADS  Google Scholar 

  45. Viviano-Beck, C. E. et al. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J. Geophys. Res. Planets 119, 1403–1431 (2014).

    Article  ADS  Google Scholar 

  46. Percival, J. B. et al. Customized spectral libraries for effective mineral exploration: mining national mineral collections. Clays Clay Miner. 66, 297–314 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Research Grants Council General Research Fund to J.R.M. (grant number 17307417) and the National Natural Science Foundation of China (grant number 91962216). J.R.M. acknowledges support from the Canadian Institute For Advanced Research Earth 4-D Program. We thank G. Wei, L. Chen and J. Huang for sample preparation and M. F. Zhou, Y. Yao, L. Chen, X. Qin, D. Hao and K. Song for spectral and chemical measurements.

Author information

Authors and Affiliations

Authors

Contributions

J.L. carried out all spectral and geological analyses and wrote the manuscript. J.R.M. conceptualized the project and helped write the paper. W.T. contributed to the interpretation of the data and revisions of the manuscript. H.H. provided the Hainan core samples and helped interpret weathering processes. L.X. contributed to early phases of the project. B.Y. helped analyse some CRISM and HiRISE images.

Corresponding author

Correspondence to J. R. Michalski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Steven Chemtob and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1 and 2, discussion and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Michalski, J.R., Tan, W. et al. Anoxic chemical weathering under a reducing greenhouse on early Mars. Nat Astron 5, 503–509 (2021). https://doi.org/10.1038/s41550-021-01303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01303-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing