Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors

Abstract

MYC genes have both essential roles during normal development and exert oncogenic functions during tumorigenesis. Expression of a dominant-negative allele of MYC, termed OmoMYC, can induce rapid tumor regression in mouse models with little toxicity for normal tissues. How OmoMYC discriminates between physiological and oncogenic functions of MYC is unclear. We have solved the crystal structure of OmoMYC and show that it forms a stable homodimer and as such recognizes DNA in the same manner as the MYC/MAX heterodimer. OmoMYC attenuates both MYC-dependent activation and repression by competing with MYC/MAX for binding to chromatin, effectively lowering MYC/MAX occupancy at its cognate binding sites. OmoMYC causes the largest decreases in promoter occupancy and changes in expression on genes that are invaded by oncogenic MYC levels. A signature of OmoMYC-regulated genes defines subgroups with high MYC levels in multiple tumor entities and identifies novel targets for the eradication of MYC-driven tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kress TR, Sabo A, Amati B . MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 2015; 15: 593–607.

    Article  CAS  PubMed  Google Scholar 

  3. Wolf E, Lin CY, Eilers M, Levens DL . Taming of the beast: shaping Myc-dependent amplification. Trends Cell Biol 2015; 25: 241–248.

    Article  CAS  PubMed  Google Scholar 

  4. Shen-Li H, O'Hagan RC, Hou Jr H, Horner JW 2nd, Lee HW, DePinho RA . Essential role for Max in early embryonic growth and development. Genes Dev 2000; 14: 17–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Scognamiglio R, Cabezas-Wallscheid N, Thier MC, Altamura S, Reyes A, Prendergast AM et al. Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 2016; 164: 668–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laurenti E, Varnum-Finney B, Wilson A, Ferrero I, Blanco-Bose WE, Ehninger A et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 2008; 3: 611–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sabo A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 2014; 511: 488–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kress TR, Cannell IG, Brenkman AB, Samans B, Gaestel M, Roepman P et al. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol Cell 2011; 41: 445–457.

    Article  CAS  PubMed  Google Scholar 

  9. Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI, Soucek L . Endogenous Myc maintains the tumor microenvironment. Genes Dev 2011; 25: 907–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giuriato S, Ryeom S, Fan AC, Bachireddy P, Lynch RC, Rioth MJ et al. Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc Natl Acad Sci USA 2006; 103: 16266–16271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dang CV, Kim JW, Gao P, Yustein J . The interplay between MYC and HIF in cancer. Nat Rev Cancer 2008; 8: 51–56.

    Article  CAS  PubMed  Google Scholar 

  12. Reimann M, Lee S, Loddenkemper C, Dörr JR, Tabor V, Aichele P et al. Tumor stroma-derived TGF-β limits Myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 2010; 17: 262–272.

    Article  CAS  PubMed  Google Scholar 

  13. van Riggelen J, Muller J, Otto T, Beuger V, Yetil A, Choi PS et al. The interaction between Myc and Miz1 is required to antagonize TGFbeta-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev 2010; 24: 1281–1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 2015; 526: 131–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Truitt ML, Conn CS, Shi Z, Pang X, Tokuyasu T, Coady AM et al. Differential requirements for eIF4E dose in normal development and cancer. Cell 2015; 162: 59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 2008; 456: 971–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM et al. Modelling Myc inhibition as a cancer therapy. Nature 2008; 455: 679–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Annibali D, Whitfield JR, Favuzzi E, Jauset T, Serrano E, Cuartas I et al. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nat Commun 2014; 5: 4632.

    Article  CAS  PubMed  Google Scholar 

  19. Soucek L, Whitfield JR, Sodir NM, Masso-Valles D, Serrano E, Karnezis AN et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev 2013; 27: 504–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soucek L, Helmer-Citterich M, Sacco A, Jucker R, Cesareni G, Nasi S . Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 1998; 17: 2463–2472.

    Article  CAS  PubMed  Google Scholar 

  21. Nair SK, Burley SK . X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 2003; 112: 193–205.

    Article  CAS  PubMed  Google Scholar 

  22. Krissinel E, Henrick K . Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007; 372: 774–797.

    Article  CAS  PubMed  Google Scholar 

  23. Abate C, Patel L, Rauscher FJ 3rd, Curran T . Redox regulation of fos and jun DNA-binding activity in vitro. Science 1990; 249: 1157–1161.

    Article  CAS  PubMed  Google Scholar 

  24. Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 2014; 511: 483–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Savino M, Annibali D, Carucci N, Favuzzi E, Cole MD, Evan GI et al. The action mechanism of the Myc inhibitor termed Omomyc may give clues on how to target Myc for cancer therapy. PLoS One 2011; 6: e22284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall' Olio V et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 2006; 8: 764–770.

    Article  CAS  PubMed  Google Scholar 

  27. Guo J, Li T, Schipper J, Nilson KA, Fordjour FK, Cooper JJ et al. Sequence specificity incompletely defines the genome-wide occupancy of Myc. Genome Biol 2014; 15: 482.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lorenzin F, Benary U, Baluapuri A, Walz S, Jung LA, von Eyss B et al. Different promoter affinities account for specificity in MYC-dependent gene regulation. Elife e-pub ahead of print 27 July 2016 doi:10.7554/eLife.15161.

  29. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Killian A, Sarafan-Vasseur N, Sesboue R, Le Pessot F, Blanchard F, Lamy A et al. Contribution of the BOP1 gene, located on 8q24, to colorectal tumorigenesis. Genes Chromosomes Cancer 2006; 45: 874–881.

    Article  CAS  PubMed  Google Scholar 

  31. Chung KY, Cheng IK, Ching AK, Chu JH, Lai PB, Wong N . Block of proliferation 1 (BOP1) plays an oncogenic role in hepatocellular carcinoma by promoting epithelial-to-mesenchymal transition. Hepatology 2011; 54: 307–318.

    Article  CAS  PubMed  Google Scholar 

  32. Anchoori RK, Karanam B, Peng S, Wang JW, Jiang R, Tanno T et al. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 2013; 24: 791–805.

    Article  CAS  PubMed  Google Scholar 

  33. Fang HY, Chang CL, Hsu SH, Huang CY, Chiang SF, Chiou SH et al. ATPase family AAA domain-containing 3 A is a novel anti-apoptotic factor in lung adenocarcinoma cells. J Cell Sci 2010; 123: 1171–1180.

    Article  CAS  PubMed  Google Scholar 

  34. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 2012; 22: 51–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gilquin B, Taillebourg E, Cherradi N, Hubstenberger A, Gay O, Merle N et al. The AAA+ ATPase ATAD3A controls mitochondrial dynamics at the interface of the inner and outer membranes. Mol Cell Biol 2010; 30: 1984–1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoffmann M, Bellance N, Rossignol R, Koopman WJ, Willems PH, Mayatepek E et al. C. elegans ATAD-3 is essential for mitochondrial activity and development. PLoS One 2009; 4: e7644.

    Article  PubMed  PubMed Central  Google Scholar 

  37. von Eyss B, Jaenicke LA, Kortlever RM, Royla N, Wiese KE, Letschert S et al. A Myc-driven change in mitochondrial dynamics limits YAP/TAZ function in mammary epithelial cells and breast cancer. Cancer Cell 2015; 28: 743–757.

    Article  CAS  PubMed  Google Scholar 

  38. Ferré D'Amaré AR, Prendergast GC, Ziff EB, Burley SK . Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 1993; 363: 38–45.

    Article  PubMed  Google Scholar 

  39. Thomas LR, Wang Q, Grieb BC, Phan J, Foshage AM, Sun Q et al. Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol Cell 2015; 58: 440–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jaenicke LA, von Eyss B, Carstensen A, Wolf E, Xu W, Greifenberg AK et al. Ubiquitin-dependent turnover of MYC antagonizes MYC/PAF1C complex accumulation to drive transcriptional elongation. Mol Cell 2016; 61: 54–67.

    Article  CAS  PubMed  Google Scholar 

  41. Rohrmoser M, Holzel M, Grimm T, Malamoussi A, Harasim T, Orban M et al. Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60 S ribosomal subunit. Mol Cell Biol 2007; 27: 3682–3694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008; 453: 481–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiang SF, Huang CY, Lin TY, Chiou SH, Chow KC . An alternative import pathway of AIF to the mitochondria. Int J Mol Med 2012; 29: 365–372.

    CAS  PubMed  Google Scholar 

  44. Ruggero D . Translational control in cancer etiology. Cold Spring Harb Persp Biol 2013; 5: a012336.

    Google Scholar 

  45. Huang KH, Chow KC, Chang HW, Lin TY, Lee MC . ATPase family AAA domain containing 3 A is an anti-apoptotic factor and a secretion regulator of PSA in prostate cancer. Int J Mol Med 2011; 28: 9–15.

    CAS  PubMed  Google Scholar 

  46. Liu YC, Li F, Handler J, Huang CR, Xiang Y, Neretti N et al. Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS One 2008; 3: e2722.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cunningham JT, Moreno MV, Lodi A, Ronen SM, Ruggero D . Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell 2014; 157: 1088–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H . Sequence-specific DNA binding by the c-myc protein. Science 1990; 250: 1149–1151.

    Article  CAS  PubMed  Google Scholar 

  49. Fellmann C, Hoffmann T, Sridhar V, Hopfgartner B, Muhar M, Roth M et al. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep 2013; 5: 1704–1713.

    Article  CAS  PubMed  Google Scholar 

  50. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Perna D, Faga G, Verrecchia A, Gorski MM, Barozzi I, Narang V et al. Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene 2012; 31: 1695–1709.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Laura Soucek for sharing results before publication, Agnes Elias and Werner Schmitz for help with protein purification, Hermann Schindelin for help with determining the structures of OmoMYC, Christopher Bombeck for help with generating the targeted shRNA library and Jens Siveke (Technical University of Munich) for kindly providing KPCs. The expert technical assistance of Barbara Bauer, André Kutschke, Angela Grün and Renate Metz is gratefully acknowledged. This work was supported by grants from Worldwide Cancer Research and the German Research Foundation via Research Group 2341 to ME, GE, LZ and CK, and a pre-doctoral fellowship from the German National Academic Foundation to LAJ. High-throughput-sequencing data are available at the Gene Expression Omnibus under the accession number GEO: GSE77328s. We thank the European Synchrotron Radiation Facility for beamtime and the staff of ID23-1 for technical support. We thank the Helmholtz Zentrum Berlin for the allocation of beamtime and the staff of BL14.1 for technical support. Atomic coordinates have been deposited in the Protein Data Bank under accession codes 5I4Z (apo structure) and 5I50 (DNA-bound structure).

Author contributions

LAJ, AG, WK, CPA, JK, BvE, SL, CR and Ld'A performed the experiments. SW, CPA and EW analyzed the high-throughput data. AB provided the data before publication. MS provided advice on microscopy. CK, LZ, GE and ME conceived the study and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Kisker or M Eilers.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, L., Gebhardt, A., Koelmel, W. et al. OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors. Oncogene 36, 1911–1924 (2017). https://doi.org/10.1038/onc.2016.354

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.354

This article is cited by

Search

Quick links