Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SAA1 polymorphisms are associated with variation in antiangiogenic and tumor-suppressive activities in nasopharyngeal carcinoma

Abstract

Nasopharyngeal carcinoma (NPC) is a cancer that occurs in high frequency in Southern China. A previous functional complementation approach and the subsequent cDNA microarray analysis have identified that serum amyloid A1 (SAA1) is an NPC candidate tumor suppressor gene. SAA1 belongs to a family of acute-phase proteins that are encoded by five polymorphic coding alleles. The SAA1 genotyping results showed that only three SAA1 isoforms (SAA1.1, 1.3 and 1.5) were observed in both Hong Kong NPC patients and healthy individuals. This study aims to determine the functional role of SAA1 polymorphisms in tumor progression and to investigate the relationship between SAA1 polymorphisms and NPC risk. Indeed, we have shown that restoration of SAA1.1 and 1.3 in the SAA1-deficient NPC cell lines could suppress tumor formation and angiogenesis in vitro and in vivo. The secreted SAA1.1 and SAA1.3 proteins can block cell adhesion and induce apoptosis in the vascular endothelial cells. In contrast, the SAA1.5 cannot induce apoptosis or inhibit angiogenesis because of its weaker binding affinity to αVβ3 integrin. This can explain why SAA1.5 has no tumor-suppressive effects. Furthermore, the NPC tumors with this particular SAA1.5/1.5 genotype showed higher levels of SAA1 gene expression, and SAA1.1 and 1.3 alleles were preferentially inactivated in tumor tissues that were examined. These findings further strengthen the conclusion for the defective function of SAA1.5 in suppression of tumor formation and angiogenesis. Interestingly, the frequency of the SAA1.5/1.5 genotype in NPC patients was ~2-fold higher than in the healthy individuals (P=0.00128, odds ratio=2.28), which indicates that this SAA1 genotype is significantly associated with a higher NPC risk. Collectively, this homozygous SAA1.5/1.5 genotype appears to be a recessive susceptibility gene, which has lost the antiangiogenic function, whereas SAA1.1 and SAA1.3 are the dominant alleles of the tumor suppressor phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

MCH:

microcell hybrid

NPC:

nasopharyngeal carcinoma

SAA1:

serum amyloid A1

TSG:

tumor suppressor gene

TS:

tumor segregant.

References

  1. Wei WI, Sham JS . Nasopharyngeal carcinoma. Lancet 2005; 365: 2041–2054.

    PubMed  Google Scholar 

  2. Liu Q, Chen JO, Huang QH, Li YH . Trends in the survival of patientswith nasopharyngeal carcinoma between 1976 and 2005 in Sihui, China: a population-based study. Chin J Cancer 2013; 32: 325–333.

    PubMed  PubMed Central  Google Scholar 

  3. Adham M, Kurniawan AN, Muhtadi AI, Roezin A, Hermani B, Gondhowiardjo S et al. Nasopharyngeal carcinomain Indonesia: epidemiology, incidence, signs and symptoms at presentation. Chin J Cancer 2012; 31: 185–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kataki AC, Simons MJ, Das AK, Sharma K, Mehra NK . Nasopharyngeal carcinomain the Northeastern states of India. Chin J Cancer 2011; 30: 106–113.

    PubMed  PubMed Central  Google Scholar 

  5. Cheng Y, Stanbridge EJ, Kong H, Bengtsson U, Lerman MI, Lung ML . A functional investigation of tumor suppressor gene activities in a nasopharyngeal carcinoma cell line HONE1 using a monochromosome transfer approach. Genes Chromosomes Cancer 2000; 28: 82–91.

    CAS  PubMed  Google Scholar 

  6. Yamada T . Serum amyloid A (SAA): a concise review of biology, assay methods and clinical usefulness. Clin Chem Lab Med 1999; 37: 381–388.

    CAS  PubMed  Google Scholar 

  7. Mitchell TI, Coon CI, Brinckerhoff CE . Serum amyloid A (SAA3) produced by rabbit synovial fibroblasts treated with phorbol esters or interleukin 1 induces synthesis of collagenase and is neutralized with specific antiserum. J Clin Invest 1991; 87: 1177–1185.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Strissel KJ, Girard MT, West-Mays JA, Rinehart WB, Cook JR, Brinckerhoff CE et al. Role of serum amyloid A as an intermediate in the IL-1 and PMA-stimulated signaling pathways regulating expression of rabbit fibroblast collagenase. Exp Cell Res 1997; 237: 275–287.

    CAS  PubMed  Google Scholar 

  9. Badolato R, Wang JM, Murphy WJ, Lloyd AR, Michiel DF, Bausserman LL et al. Serum amyloid A is a chemoattractant: induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J Exp Med 1994; 180: 203–209.

    CAS  PubMed  Google Scholar 

  10. Preciado-Patt L, Hershkoviz R, Fridkin M, Lider O . Serum amyloid A binds specific extracellular matrix glycoproteins and induces the adhesion of resting CD4+ T cells. J Immunol 1996; 156: 1189–1195.

    CAS  PubMed  Google Scholar 

  11. Xu L, Badolato R, Murphy WJ, Longo DL, Anver M, Hale S et al. A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J Immunol 1995; 155: 1184–1190.

    CAS  PubMed  Google Scholar 

  12. Cabana VG, Siegel JN, Sabesin SM . Effects of the acute phase response on the concentration and density distribution of plasma lipids and apolipoproteins. J Lipid Res 1989; 30: 39–49.

    CAS  PubMed  Google Scholar 

  13. Hoffman JS, Benditt EP . Secretion of serum amyloid protein and assembly of serum amyloid protein-rich high density lipoprotein in primary mouse hepatocyte culture. J Biol Chem 1982; 257: 10518–10522.

    CAS  PubMed  Google Scholar 

  14. Liang JS, Sipe JD . Recombinant human serum amyloid A (apoSAAp) binds cholesterol and modulates cholesterol flux. J Lipid Res, 1995; 36: 37–46.

    CAS  PubMed  Google Scholar 

  15. Liang JS, Schreiber BM, Salmona M, Gonnerman WA, de Beer FC, Phillip G et al. Amino terminal region of acute phase, but not constitutive, serum amyloid A (apoSAA) specifically binds and transports cholesterol into aortic smooth muscle and HepG2 cells. J Lipid Res 1996; 37: 2109–2116.

    CAS  PubMed  Google Scholar 

  16. Lindhorst E, Young D, Bagshaw W, Hyland M, Kisilevsky R . Acute inflammation, acute phase serum amyloid A and cholesterol metabolism in the mouse. Biochim Biophys Acta 1997; 1339: 143–154.

    CAS  PubMed  Google Scholar 

  17. Uhlar CM, Whitehead AS . Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem 1999; 265: 501–523.

    CAS  PubMed  Google Scholar 

  18. Malle E, Sodin-Semrl S, Kovacevic A . Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. Cell Mol Life Sci 2009; 66: 9–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu C . Serum amyloid a protein in clinical cancer diagnosis. Pathol Oncol Res 2012; 18: 117–121.

    CAS  PubMed  Google Scholar 

  20. Cho WC, Yip TT, Yip C, Yip V, Thulasiraman V, Ngan RK et al. Identification of serum amyloid a protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling. Clin Cancer Res 2004; 10: 43–52.

    CAS  PubMed  Google Scholar 

  21. Liao Q, Zhao L, Chen X, Deng Y, Ding Y . Serum proteome analysis for profiling protein markers associated with carcinogenesis and lymph node metastasis in nasopharyngeal carcinoma. Clin Exp Metastasis 2008; 25: 465–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Preciado-Patt L, Levartowsky D, Prass M, Hershkoviz R, Lider O, Fridkin M . Inhibition of cell adhesion to glycoproteins of the extracellular matrix by peptides corresponding to serum amyloid A. Toward understanding the physiological role of an enigmatic protein. Eur J Biochem 1994; 223: 35–42.

    CAS  PubMed  Google Scholar 

  23. Nicosia RF, Bonanno E . Inhibition of angiogenesis invitro by Arg-Gly-Asp-containing synthetic peptide. Am J Pathol 1991; 138: 829–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiang HS, Yang RS, Huang TF . The Arg-Gly-Asp-containing peptide, rhodostomin, inhibits in vitro cell adhesion to extracellular matrices and platelet aggregation caused by saos-2 human osteosarcoma cells. Br J Cancer 1995; 71: 265–270.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwamoto Y, Nomizu M, Yamada Y, Ito Y, Tanaka K, Sugioka Y . Inhibition of angiogenesis, tumour growth and experimental metastasis of human fibrosarcoma cells HT1080 by a multimeric form of the laminin sequence Tyr-Ile-Gly-Ser-Arg (YIGSR). Br J Cancer 1996; 73: 589–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lung HL, Bangarusamy DK, Xie D, Cheung AK, Cheng Y, Kumaran MK et al. THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 2005; 24: 6525–6532.

    CAS  PubMed  Google Scholar 

  27. Robertson GP, Huang HJ, Cavenee WK . Identification and validation of tumor suppressor genes. Mol Cell Biol Res Commun 1999; 2: 1–10.

    CAS  PubMed  Google Scholar 

  28. Li HM, Man C, Jin Y, Deng W, Yip YL, Feng HC et al. Molecular and cytogenetic changes involved in the immortalization of nasopharyngeal epithelialcells by telomerase. Int J Cancer 2006; 119: 1567–1576.

    CAS  PubMed  Google Scholar 

  29. Brooks PC, Clark RA, Cheresh DA . Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264: 569–571.

    CAS  PubMed  Google Scholar 

  30. Avraamides CJ, Garmy-Susini B, Varner JA . Integrins in angiogenesisand lymphangiogenesis. Nat Rev Cancer 2008; 8: 604–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Urieli-Shoval S, Cohen P, Eisenberg S, Matzner Y . Widespread expression of serum amyloid A in histologically normal human tissues. Predominant localization to the epithelium. J Histochem Cytochem 1998; 46: 1377–1384.

    CAS  PubMed  Google Scholar 

  32. Sung HJ, Ahn JM, Yoon YH, Rhim TY, Park CS, Park JY et al. Identification and validation of SAA as a potential lung cancer biomarker and its involvement in metastatic pathogenesis of lung cancer. J Proteome Res 2011; 10: 1383–1395.

    CAS  PubMed  Google Scholar 

  33. Frisch SM, Screaton RA . Anoikis mechanisms. Curr Opin Cell Biol 2001; 13: 555–562.

    CAS  PubMed  Google Scholar 

  34. Glaser R, Zhang HY, Yao KT, Zhu HC, Wang FX, Li GY et al. Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein–Barr virus that were derived from nasopharyngeal carcinomas. Proc Natl Acad Sci USA 1989; 86: 9524–9528.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang DP, Ho JH, Poon YF, Chew EC, Saw D, Lui M et al. Establishment of a cell line (NPC/HK1) from a differentiated squamous carcinoma of the nasopharynx. Int J Cancer 1980; 26: 127–132.

    CAS  PubMed  Google Scholar 

  36. Cheung ST, Huang DP, Hui AB, Lo KW, Ko CW, Tsang YS et al. Nasopharyngeal carcinomacell line (C666-1) consistently harbouring Epstein–Barr virus. Int J Cancer 1999; 83: 121–126.

    CAS  PubMed  Google Scholar 

  37. Tsang CM, Zhang G, Seto E, Takada K, Deng W, Yip YL et al. Epstein–Barr virus infection in immortalized nasopharyngeal epithelialcells: regulation of infection and phenotypic characterization. Int J Cancer 2010; 127: 1570–1583.

    CAS  PubMed  Google Scholar 

  38. Chan KC, Ko JM, Lung HL, Sedlacek R, Zhang ZF, Luo DZ et al. Catalytic activity of Matrix metalloproteinase-19 is essential for tumor suppressor and anti-angiogenic activities in nasopharyngeal carcinoma. Int J Cancer 2011; 129: 1826–1837.

    CAS  PubMed  Google Scholar 

  39. Venetsanakos E, Mirza A, Fanton C, Romanov SR, Tlsty T, McMahon M . Induction of tubulogenesis in telomerase-immortalized human microvascular endothelial cells by glioblastoma cells. Exp Cell Res 2002; 273: 21–33.

    CAS  PubMed  Google Scholar 

  40. Zhang H, Jin Y, Chen X, Jin C, Law S, Tsao SW et al. Cytogenetic aberrations in immortalization of esophageal epithelial cells. Cancer Genet Cytogenet 2006; 165: 25–35.

    CAS  PubMed  Google Scholar 

  41. Deng W, Tsao SW, Guan XY, Lucas JN, Si HX, Leung CS et al. Distinct profiles of critically short telomeres are a key determinant of different chromosome aberrations in immortalized human cells: whole-genome evidence from multiple cell lines. Oncogene 2004; 23: 9090–9101.

    CAS  PubMed  Google Scholar 

  42. Lung HL, Lo PH, Xie D, Apte SS, Cheung AK, Cheng Y et al. Characterization of a novel epigenetically-silenced, growth-suppressive gene, ADAMTS9, and its association with lymph node metastases in nasopharyngeal carcinoma. Int J Cancer 2008; 123: 401–408.

    CAS  PubMed  Google Scholar 

  43. Lo PH, Lung HL, Cheung AK, Apte SS, Chan KW, Kwong FM et al. Extracellular protease ADAMTS9 suppresses esophageal and nasopharyngeal carcinoma tumor formation by inhibiting angiogenesis. Cancer Res 2010; 70: 5567–5576.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang Z, Cheng Y, Chiu PM, Cheung FM, Nicholls JM, Kwong DL et al. Tumor suppressor alpha B-crystallin (CRYAB) associates with the cadherin/catenin adherens junction and impairs NPC progression-associated properties. Oncogene 2012; 31: 3709–3720.

    CAS  PubMed  Google Scholar 

  45. Thorn CF, Whitehead AS . Differential glucocorticoid enhancement of the cytokine-driven transcriptional activation of the human acute phase serum amyloid A genes, SAA1 and SAA2. J Immunol 2002; 169: 399–406.

    CAS  PubMed  Google Scholar 

  46. Kumon Y, Suehiro T, Faulkes DJ, Hosakawa T, Ikeda Y, Woo P et al. Transcriptional regulation of serum amyloid A1 gene expression in human aortic smooth muscle cells involves CCAAT/enhancer binding proteins (C/EBP) and is distinct from HepG2 cells. Scand J Immunol 2002; 56: 504–511.

    CAS  PubMed  Google Scholar 

  47. Ko JM, Chan PL, Yau WL, Chan HK, Chan KC, Yu ZY et al. Monochromosome transfer and microarray analysis identify a critical tumor-suppressive region mapping to chromosome 13q14 and THSD1 in esophageal carcinoma. Mol Cancer Res 2008; 6: 592–603.

    CAS  PubMed  Google Scholar 

  48. Protopopov AI, Li J, Winberg G, Gizatullin RZ, Kashuba VI, Klein G et al. Human cell lines engineered for tetracycline-regulated expression of tumor suppressor candidate genes from a frequently affected chromosomal region, 3p21. J Gene Med 2002; 4: 397–406.

    CAS  PubMed  Google Scholar 

  49. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006; 124: 1283–1298.

    CAS  PubMed  Google Scholar 

  50. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 2005; 307: 1098–1101.

    CAS  PubMed  Google Scholar 

  51. Lung HL, Cheung AK, Xie D, Cheng Y, Kwong FM, Murakami Y et al. TSLC1 is a tumor suppressor gene associated with metastasis in nasopharyngeal carcinoma. Cancer Res 2006; 66: 9385–9392.

    CAS  PubMed  Google Scholar 

  52. Yamada T, Kluve-Beckerman B, Liepnieks JJ, Benson MD . Fibril formation from recombinant human serum amyloid A. Biochim Biophys Acta 1994; 1226: 323–329.

    CAS  PubMed  Google Scholar 

  53. Wong VC, Chen H, Ko JM, Chan KW, Chan YP, Law S et al. Tumor suppressor dual-specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial-mesenchymal transition (EMT)-associated phenotype. Int J Cancer 2012; 130: 83–95.

    CAS  PubMed  Google Scholar 

  54. Mould AP . Analyzing integrin-dependent adhesion. Curr Protoc Cell Biol 2011. (Chapter 9), Unit 9.4.1–9.4.17.

  55. Perron-Sierra F, Saint Dizier D, Bertrand M, Genton A, Tucker GC, Casara P . Substituted benzocyloheptenes as potent and selective alpha(v) integrin antagonists. Bioorg Med Chem Lett 2002; 12: 3291–3296.

    CAS  PubMed  Google Scholar 

  56. Treuting PM Dintzis SM Frevert CW Liggitt HD Montine KS . Comparative Anatomy and Histology: A Mouse and Human Atlas, 1st edn. Elsevier/Academic Press: Amsterdam, Netherlands/Boston, MA, USA, 2012.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the AoE NPC Tissue Bank for providing the NPC specimens and the NPC TMA. We thank the Hong Kong Red Cross for providing us the blood from healthy individuals. We also thank Dr Edison Tak-Bun Liu for their microarray support in the Genome Institute of Singapore (GIS); Dr Sai Wah Tsao for providing us the immortalized cell lines; Dr John M Nicholls for the TMA analysis and Dr Pui Man Chiu for her help in constructing the NPC TMA and SAA immunohistochemistry staining; Dr Didier Trono for the supply of the lentiviral vectors, pWPI, pMD2.G and psPAX2. We thank Dr David Root for the supply of the lentihair pLKO.1-TRC cloning vector and Dr David Sabatini for the pLKO.1-scramble shRNA construct. This work was supported by the General Research Fund (HKU772309 to HLL) of the Research Grants Council of the Hong Kong Special Administrative Region.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H L Lung or M L Lung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lung, H., Man, O., Yeung, M. et al. SAA1 polymorphisms are associated with variation in antiangiogenic and tumor-suppressive activities in nasopharyngeal carcinoma. Oncogene 34, 878–889 (2015). https://doi.org/10.1038/onc.2014.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.12

This article is cited by

Search

Quick links