Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

FLASH is essential during early embryogenesis and cooperates with p73 to regulate histone gene transcription

Abstract

Replication-dependent histone gene expression is a fundamental process occurring in S-phase under the control of the cyclin-E/CDK2 complex. This process is regulated by a number of proteins, including Flice-Associated Huge Protein (FLASH) (CASP8AP2), concentrated in specific nuclear organelles known as HLBs. FLASH regulates both histone gene transcription and mRNA maturation, and its downregulation in vitro results in the depletion of the histone pull and cell-cycle arrest in S-phase. Here we show that the transcription factor p73 binds to FLASH and is part of the complex that regulates histone gene transcription. Moreover, we created a novel gene trap to disrupt FLASH in mice, and we show that homozygous deletion of FLASH results in early embryonic lethality, owing to arrest of FLASH−/− embryos at the morula stage. These results indicate that FLASH is an essential, non-redundant regulator of histone transcription and cell cycle during embryogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Alizadeh Z, Kageyama S, Aoki F . (2005). Degradation of maternal mRNA in mouse embryos: selective degradation of specific mRNAs after fertilization. Mol Reprod Dev 72: 281–290.

    Article  CAS  PubMed  Google Scholar 

  • Barcaroli D, Bongiorno-Borbone L, Terrinoni A, Hofmann TG, Rossi M, Knight RA et al. (2006a). FLASH is required for histone transcription and S-phase progression. Proc Natl Acad Sci USA 103: 14808–14812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcaroli D, Dinsdale D, Neale MH, Bongiorno-Borbone L, Ranalli M, Munarriz E et al. (2006b). FLASH is an essential component of Cajal bodies. Proc Natl Acad Sci USA 103: 14802–14807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongiorno-Borbone L, De Cola A, Barcaroli D, Knight RA, Di Ilio C, Melino G et al. (2009). FLASH degradation in response to UV-C results in histone locus bodies disruption and cell-cycle arrest. Oncogene 29: 802–810.

    Article  PubMed  Google Scholar 

  • Bongiorno-Borbone L, De Cola A, Vernole P, Finos L, Barcaroli D, Knight RA et al. (2008). FLASH and NPAT positive but not Coilin positive Cajal Bodies correlate with cell ploidy. Cell Cycle 7: 2357–2367.

    Article  CAS  PubMed  Google Scholar 

  • De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A, Falco M, Annicchiarico-Petruzzelli M et al. (1998). Two new p73 splice variants, gamma and delta, with different transcriptional activity. J Exp Med 188: 1763–1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Fruscio M, Weiher H, Vanderhyden BC, Imai T, Shiomi T, Hori TA et al. (1997). Proviral inactivation of the Npat gene of Mpv 20 mice results in early embryonic arrest. Mol Cell Biol 17: 4080–4086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghule PN, Becker KA, Harper JW, Lian JB, Stein JL, van Wijnen AJ et al. (2007). Cell cycle dependent phosphorylation and subnuclear organization of the histone gene regulator p220(NPAT) in human embryonic stem cells. J Cell Physiol 213: 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Ghule PN, Dominski Z, Yang XC, Marzluff WF, Becker KA, Harper JW et al. (2008). Staged assembly of histone gene expression machinery at subnuclear foci in the abbreviated cell cycle of human embryonic stem cells. Proc Natl Acad Sci USA 105: 16964–16969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giebelhaus DH, Heikkila JJ, Schultz GA . (1983). Changes in the quantity of histone and actin messenger RNA during the development of preimplantation mouse embryos. Dev Biol 98: 148–154.

    Article  CAS  PubMed  Google Scholar 

  • Gottifredi V, Pelicci G, Munarriz E, Maione R, Pelicci PG, Amati P . (1999). Polyomavirus large T antigen induces alterations in cytoplasmic signalling pathways involving Shc activation. J Virol 73: 1427–1437.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graves RA, Marzluff WF, Giebelhaus DH, Schultz GA . (1985). Quantitative and qualitative changes in histone gene expression during early mouse embryo development. Proc Natl Acad Sci USA 82: 5685–5689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grob TJ, Novak U, Maisse C, Barcaroli D, Luthi AU, Pirnia F et al. (2001). Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8: 1213–1223.

    Article  CAS  PubMed  Google Scholar 

  • Hall C, Nelson DM, Ye X, Baker K, DeCaprio JA, Seeholzer S et al. (2001). HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclin–cdk2 substrate whose expression blocks S-phase progression. Mol Cell Biol 21: 1854–1865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA et al. (2004). Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet 13: 2263–2278.

    Article  CAS  PubMed  Google Scholar 

  • Hogan B, Beddington R, Costantini F, Lacy E . (1994). Manipulating the Mouse Embryo, Press edn Cold Spring Harbor: NY.

    Google Scholar 

  • Joyner AL . (2000). Gene Targeting: a Practical Approach. Oxford University Press: Oxford.

    Google Scholar 

  • Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G . (2000). The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci 113 (Part 10): 1661–1670.

    CAS  PubMed  Google Scholar 

  • Liu JL, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall JG . (2006). The Drosophila melanogaster Cajal body. J Cell Biol 172: 875–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, Van Tine BA, Wei Y, Garrett MD, Nelson D, Adams PD et al. (2000). Cell cycle-regulated phosphorylation of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes Dev 14: 2298–2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisse C, Munarriz E, Barcaroli D, Melino G, De Laurenzi V . (2004). DNA damage induces the rapid and selective degradation of the DeltaNp73 isoform, allowing apoptosis to occur. Cell Death Differ 11: 685–687.

    Article  CAS  PubMed  Google Scholar 

  • Matera AG . (2006). Drosophila Cajal bodies: accessories not included. J Cell Biol 172: 791–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M et al. (2004). p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279: 8076–8083.

    Article  CAS  PubMed  Google Scholar 

  • Melino G, De Laurenzi V, Vousden KH . (2002). p73: friend or foe in tumorigenesis. Nat Rev Cancer 2: 605–615.

    Article  CAS  PubMed  Google Scholar 

  • Melino G, Lu X, Gasco M, Crook T, Knight RA . (2003). Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 28: 663–670.

    Article  CAS  PubMed  Google Scholar 

  • Miele A, Braastad CD, Holmes WF, Mitra P, Medina R, Xie R et al. (2005). HiNF-P directly links the cyclin E/CDK2/p220NPAT pathway to histone H4 gene regulation at the G1/S phase cell cycle transition. Mol Cell Biol 25: 6140–6153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra P, Xie RL, Medina R, Hovhannisyan H, Zaidi SK, Wei Y et al. (2003). Identification of HiNF-P, a key activator of cell cycle-controlled histone H4 genes at the onset of S phase. Mol Cell Biol 23: 8110–8123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munarriz E, Barcaroli D, Stephanou A, Townsend PA, Maisse C, Terrinoni A et al. (2004). PIAS-1 is a checkpoint regulator which affects exit from G1 and G2 by sumoylation of p73. Mol Cell Biol 24: 10593–10610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C . (1991). A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139: 271–279.

    Article  CAS  PubMed  Google Scholar 

  • Paynton BV . (1998). RNA-binding proteins in mouse oocytes and embryos: expression of genes encoding Y box, DEAD box RNA helicase, and polyA binding proteins. Dev Genet 23: 285–298.

    Article  CAS  PubMed  Google Scholar 

  • Ramadan S, Terrinoni A, Catani MV, Sayan AE, Knight RA, Mueller M et al. (2005). p73 induces apoptosis by different mechanisms. Biochem Biophys Res Commun 331: 713–717.

    Article  CAS  PubMed  Google Scholar 

  • Sayan AE, Paradisi A, Vojtesek B, Knight RA, Melino G, Candi E . (2005). New antibodies recognizing p73: comparison with commercial antibodies. Biochem Biophys Res Commun 330: 186–193.

    Article  CAS  PubMed  Google Scholar 

  • Silver J, Keerikatte V . (1989). Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J Virol 63: 1924–1928.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasini R, Mak TW, Melino G . (2008a). The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol 18: 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Tomasini R, Tsuchihara K, Tsuda C, Lau SK, Wilhelm M, Ruffini A et al. (2009). TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc Natl Acad Sci USA 106: 797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC et al. (2008b). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 22: 2677–2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernole P, Neale MH, Barcaroli D, Munarriz E, Knight RA, Tomasini R et al. (2009). TAp73alpha binds the kinetochore proteins Bub1 and Bub3 resulting in polyploidy. Cell Cycle 8: 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Jin J, Harper JW . (2003). The cyclin E/Cdk2 substrate and Cajal body component p220(NPAT) activates histone transcription through a novel LisH-like domain. Mol Cell Biol 23: 3669–3680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie R, Medina R, Zhang Y, Hussain S, Colby J, Ghule P et al. (2009). The histone gene activator HINFP is a nonredundant cyclin E/CDK2 effector during early embryonic cell cycles. Proc Natl Acad Sci USA 106: 12359–12364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XC, Burch BD, Yan Y, Marzluff WF, Dominski Z . (2009). FLASH, a proapoptotic protein involved in activation of caspase-8, is essential for 3′ end processing of histone pre-mRNAs. Mol Cell 36: 267–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Wei Y, Nalepa G, Harper JW . (2003). The cyclin E/Cdk2 substrate p220(NPAT) is required for S-phase entry, histone gene expression, and Cajal body maintenance in human somatic cells. Mol Cell Biol 23: 8586–8600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J . (2004). Coordination of DNA synthesis and histone gene expression during normal cell cycle progression and after DNA damage. Cell Cycle 3: 695–697.

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Kennedy BK, Lawrence BD, Barbie DA, Matera AG, Fletcher JA et al. (2000). NPAT links cyclin E–Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev 14: 2283–2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from AIRC, MIUR, to VDL, and AIRC, EU-EPISTEM; FIRB, MIUR; MinSan; Telethon and Alleanza Contro il Cancro to GM. DB is supported by a FIRC scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V De Laurenzi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Cola, A., Bongiorno-Borbone, L., Bianchi, E. et al. FLASH is essential during early embryogenesis and cooperates with p73 to regulate histone gene transcription. Oncogene 31, 573–582 (2012). https://doi.org/10.1038/onc.2011.274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.274

Keywords

This article is cited by

Search

Quick links