Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer

Abstract

DNA amplifications, leading to the overexpression of oncogenes, are a cardinal feature of lung cancer and directly contribute to its pathogenesis. To uncover such novel alterations, we performed an array-based comparative genomic hybridization survey of 128 non-small-cell lung cancer cell lines and tumors. Prominent among our findings, we identified recurrent high-level amplification at cytoband 22q11.21 in 3% of lung cancer specimens, with another 11% of specimens exhibiting low-level gain spanning that locus. The 22q11.21 amplicon core contained eight named genes, only four of which were overexpressed (by transcript profiling) when amplified. Among these, CRKL encodes an adapter protein functioning in signal transduction, best known as a substrate of the BCR-ABL kinase in chronic myelogenous leukemia. RNA-interference-mediated knockdown of CRKL in lung cancer cell lines with (but not without) amplification led to significantly decreased cell proliferation, cell-cycle progression, cell survival, and cell motility and invasion. In addition, overexpression of CRKL in immortalized human bronchial epithelial cells led to enhanced growth factor-independent cell growth. Our findings indicate that amplification and resultant overexpression of CRKL contribute to diverse oncogenic phenotypes in lung cancer, with implications for targeted therapy, and highlight a role of adapter proteins as primary genetic drivers of tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA et al. (2005). Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7: 556–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergamaschi A, Kim YH, Wang P, Sorlie T, Hernandez-Boussard T, Lonning PE et al. (2006). Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45: 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  • Daly RJ, Binder MD, Sutherland RL . (1994). Overexpression of the Grb2 gene in human breast cancer cell lines. Oncogene 9: 2723–2727.

    CAS  PubMed  Google Scholar 

  • Daly RJ, Gu H, Parmar J, Malaney S, Lyons RJ, Kairouz R et al. (2002). The docking protein Gab2 is overexpressed and estrogen regulated in human breast cancer. Oncogene 21: 5175–5181.

    Article  CAS  PubMed  Google Scholar 

  • de Jong R, ten Hoeve J, Heisterkamp N, Groffen J . (1997). Tyrosine 207 in CRKL is the BCR/ABL phosphorylation site. Oncogene 14: 507–513.

    Article  CAS  PubMed  Google Scholar 

  • Feller SM . (2001). Crk family adaptors-signalling complex formation and biological roles. Oncogene 20: 6348–6371.

    Article  CAS  PubMed  Google Scholar 

  • Furge KA, Zhang YW, Vande Woude GF . (2000). Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene 19: 5582–5589.

    Article  CAS  PubMed  Google Scholar 

  • Garnis C, Lockwood WW, Vucic E, Ge Y, Girard L, Minna JD et al. (2006). High resolution analysis of non-small cell lung cancer cell lines by whole genome tiling path array CGH. Int J Cancer 118: 1556–1564.

    Article  CAS  PubMed  Google Scholar 

  • Gay B, Suarez S, Caravatti G, Furet P, Meyer T, Schoepfer J . (1999). Selective GRB2 SH2 inhibitors as anti-ras therapy. Int J Cancer 83: 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Hemmeryckx B, van Wijk A, Reichert A, Kaartinen V, de Jong R, Pattengale PK et al. (2001). Crkl enhances leukemogenesis in BCR/ABL P190 transgenic mice. Cancer Res 61: 1398–1405.

    CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. (2008). Cancer statistics, 2008. CA Cancer J Clin 58: 71–96.

    Article  PubMed  Google Scholar 

  • Kardinal C, Konkol B, Schulz A, Posern G, Lin H, Adermann K et al. (2000). Cell-penetrating SH3 domain blocker peptides inhibit proliferation of primary blast cells from CML patients. FASEB J 14: 1529–1538.

    Article  CAS  PubMed  Google Scholar 

  • Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KC, Lakshmi B et al. (2007). Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci USA 104: 16663–16668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al. (2002). The human genome browser at UCSC. Genome Res 12: 996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwei KA, Kim YH, Girard L, Kao J, Pacyna-Gengelbach M, Salari K et al. (2008). Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene 27: 3635–3640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X et al. (2008). Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA 105: 20380–20385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutterbach B, Zeng Q, Davis LJ, Hatch H, Hang G, Kohl NE et al. (2007). Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res 67: 2081–2088.

    Article  CAS  PubMed  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129–2139.

    Article  CAS  PubMed  Google Scholar 

  • Ma PC, Kijima T, Maulik G, Fox EA, Sattler M, Griffin JD et al. (2003). c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 63: 6272–6281.

    CAS  PubMed  Google Scholar 

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  • Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF et al. (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23: 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez RD, Sheridan S, Girard L, Sato M, Kim Y, Pollack J et al. (2004). Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res 64: 9027–9034.

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Vaughan MB, Girard L, Peyton M, Lee W, Shames DS et al. (2006). Multiple oncogenic changes (K-RAS(V12), p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells. Cancer Res 66: 2116–2128.

    Article  CAS  PubMed  Google Scholar 

  • Sattler M, Salgia R . (1998). Role of the adapter protein CRKL in signal transduction of normal hematopoietic and BCR/ABL-transformed cells. Leukemia 12: 637–644.

    Article  CAS  PubMed  Google Scholar 

  • Senechal K, Halpern J, Sawyers CL . (1996). The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J Biol Chem 271: 23255–23261.

    Article  CAS  PubMed  Google Scholar 

  • Singer CF, Hudelist G, Lamm W, Mueller R, Handl C, Kubista E et al. (2006). Active (p)CrkL is overexpressed in human malignancies: potential role as a surrogate parameter for therapeutic tyrosine kinase inhibition. Oncol Rep 15: 353–359.

    CAS  PubMed  Google Scholar 

  • Stein D, Wu J, Fuqua SA, Roonprapunt C, Yajnik V, D'Eustachio P et al. (1994). The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO J 13: 1331–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ten Hoeve J, Kaartinen V, Fioretos T, Haataja L, Voncken JW, Heisterkamp N et al. (1994). Cellular interactions of CRKL, and SH2-SH3 adaptor protein. Cancer Res 54: 2563–2567.

    CAS  PubMed  Google Scholar 

  • ten Hoeve J, Morris C, Heisterkamp N, Groffen J . (1993). Isolation and chromosomal localization of CRKL, a human crk-like gene. Oncogene 8: 2469–2474.

    CAS  PubMed  Google Scholar 

  • Tibshirani R, Wang P . (2008). Spatial smoothing and hot spot detection for CGH data using the fused lasso. Biostatistics 9: 18–29.

    Article  PubMed  Google Scholar 

  • Tonon G, Wong KK, Maulik G, Brennan C, Feng B, Zhang Y et al. (2005). High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci USA 102: 9625–9630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature 450: 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Weir BA, LaFramboise T, Lin M, Beroukhim R, Garraway L et al. (2005). Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res 65: 5561–5570.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the SFGF for fabrication of microarrays and the SMD for database support. We thank Eon Rios for assistance with flow cytometry analysis. We also thank the members of the Pollack lab for helpful discussion. This work was supported in part by grants from the NIH: R01 CA97139 (JRP), SPORE P50CA70907 (JDM), EDRN U01CA084971 (AFG); DOD VITAL (JDM); Longenbaugh Foundations (JDM); TRDRP (17FT-0062; KAK) and the Deutsche Krebshilfe: 108003 (IP). KS was supported by the Medical Scientist Training Program and is a Paul & Daisy Soros fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Pollack.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Kwei, K., Girard, L. et al. Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer. Oncogene 29, 1421–1430 (2010). https://doi.org/10.1038/onc.2009.437

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.437

Keywords

This article is cited by

Search

Quick links