Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of p53 expression, phosphorylation and subcellular localization by a G-protein-coupled receptor

Abstract

G-protein-coupled receptors (GPCRs) have been extremely successful drug targets for a multitude of diseases from heart failure to depression. This superfamily of cell surface receptors have not, however, been widely considered as a viable target in cancer treatment. In this study we show that a classical Gq/11-coupled GPCR, the M3-muscarinic receptor, was able to regulate apoptosis through receptors that are endogenously expressed in the human neuroblastoma cell line, SH-SY5Y, and when ectopically expressed in Chinese hamster ovary (CHO) cells. Stimulation of the M3-muscarinic receptor was shown to inhibit the ability of the DNA-damaging chemotherapeutic agent, etoposide, from mediating apoptosis. This protective response in CHO cells correlated with the ability of the receptor to regulate the expression levels of p53. In contrast, stimulation of endogenous muscarinic receptors in SH-SY5Y cells did not regulate p53 expression but rather was able to inhibit p53 translocation to the mitochondria and p53 phosphorylation at serine 15 and 37. This study suggests the possibility that a GPCR can regulate the apoptotic properties of a chemotherapeutic DNA-damaging agent by regulating the expression, subcellular trafficking and modification of p53 in a manner that is, in part, dependent on the cell type.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CHO:

chinese hamster ovary

ERK:

extracellular regulated protein kinase

GPCR:

G-protein-coupled receptor

MAP kinase:

mitogen activated protein kinase

PKA:

protein kinase A

PKC:

protein kinase C

PLC:

phospholipase C

References

  • Bean LJ, Stark GR . (2001). Phosphorylation of serines 15 and 37 is necessary for efficient accumulation of p53 following irradiation with UV. Oncogene 20: 1076–1084.

    Article  CAS  Google Scholar 

  • Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–805.

    Article  CAS  Google Scholar 

  • Bourdon JC . (2007). p53 and its isoforms in cancer. Br J Cancer 97: 277–282.

    Article  CAS  Google Scholar 

  • Brooks CL, Gu W . (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15: 164–171.

    Article  CAS  Google Scholar 

  • Brown JM, Attardi LD . (2005). The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5: 231–237.

    Article  CAS  Google Scholar 

  • Budd DC, McDonald J, Emsley N, Cain K, Tobin AB . (2003). The C-terminal tail of the M3-muscarinic receptor possesses anti-apoptotic properties. J Biol Chem 278: 19565–19573.

    Article  CAS  Google Scholar 

  • Budd DC, Spragg EJ, Ridd K, Tobin AB . (2004). Signalling of the M3-muscarinic receptor to the anti-apoptotic pathway. Biochem J 381: 43–49.

    Article  CAS  Google Scholar 

  • Chao C, Saito S, Anderson CW, Appella E, Xu Y . (2000). Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci USA 97: 11936–11941.

    Article  CAS  Google Scholar 

  • Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD . (1999). Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 96: 13777–13782.

    Article  CAS  Google Scholar 

  • Chen CK, Burns ME, Spencer M, Niemi GA, Chen J, Hurley JB et al. (1999). Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci USA 96: 3718–3722.

    Article  CAS  Google Scholar 

  • Chipuk JE, Green DR . (2003). p53's believe it or not: lessons on transcription-independent death. J Clin Immunol 23: 355–361.

    Article  CAS  Google Scholar 

  • Chitaley K, Wingard CJ, Clinton Webb R, Branam H, Stopper VS, Lewis RW et al. (2001). Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med 7: 119–122.

    Article  CAS  Google Scholar 

  • Courtois S, de Fromentel CC, Hainaut P . (2004). p53 protein variants: structural and functional similarities with p63 and p73 isoforms. Oncogene 23: 631–638.

    Article  CAS  Google Scholar 

  • Cui H, Schroering A, Ding HF . (2002). p53 mediates DNA damaging drug-induced apoptosis through a caspase-9-dependent pathway in SH-SY5Y neuroblastoma cells. Mol Cancer Ther 1: 679–686.

    CAS  PubMed  Google Scholar 

  • Dale LB, Bhattacharya M, Anborgh PH, Murdoch B, Bhatia M, Nakanishi S et al. (2000). G protein-coupled receptor kinase-mediated desensitization of metabotropic glutamate receptor 1A protects against cell death. J Biol Chem 275: 38213–38220.

    Article  CAS  Google Scholar 

  • De Sarno P, Shestopal SA, King TD, Zmijewska A, Song L, Jope RS . (2003). Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J Biol Chem 278: 11086–11093.

    Article  CAS  Google Scholar 

  • De Sarno P, Shestopal SA, Zmijewska AA, Jope RS . (2005). Anti-apoptotic effects of muscarinic receptor activation are mediated by Rho kinase. Brain Res 1041: 112–115.

    Article  CAS  Google Scholar 

  • DeFea KA, Vaughn ZD, O’Bryan EM, Nishijima D, Dery O, Bunnett NW . (2000). The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestin-dependent scaffolding complex. Proc Natl Acad Sci USA 97: 11086–11091.

    Article  CAS  Google Scholar 

  • Diao CT, Li L, Lau SY, Wong TM, Wong NS . (2000). kappa-Opioid receptor potentiates apoptosis via a phospholipase C pathway in the CNE2 human epithelial tumor cell line. Biochim Biophys Acta 1499: 49–62.

    Article  CAS  Google Scholar 

  • Dorsam RT, Gutkind JS . (2007). G-protein-coupled receptors and cancer. Nat Rev Cancer 7: 79–94.

    Article  CAS  Google Scholar 

  • Dumont P, Leu JI, Della Pietra 3rd AC, George DL, Murphy M . (2003). The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33: 357–365.

    Article  CAS  Google Scholar 

  • Erster S, Mihara M, Kim RH, Petrenko O, Moll UM . (2004). in vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24: 6728–6741.

    Article  CAS  Google Scholar 

  • Fang X, Yu S, LaPushin R, Lu Y, Furui T, Penn LZ et al. (2000). Lysophosphatidic acid prevents apoptosis in fibroblasts via G(i)-protein-mediated activation of mitogen-activated protein kinase. Biochem J 352 (Part 1): 135–143.

    Article  CAS  Google Scholar 

  • Haupt S, Haupt Y . (2006). Importance of p53 for cancer onset and therapy. Anticancer Drugs 17: 725–732.

    Article  CAS  Google Scholar 

  • Hu T, Miller CM, Ridder GM, Aardema MJ . (1999). Characterization of p53 in Chinese hamster cell lines CHO-K1, CHO-WBL, and CHL: implications for genotoxicity testing. Mutat Res 426: 51–62.

    Article  CAS  Google Scholar 

  • Kakudo Y, Shibata H, Otsuka K, Kato S, Ishioka C . (2005). Lack of correlation between p53-dependent transcriptional activity and the ability to induce apoptosis among 179 mutant p53's. Cancer Res 65: 2108–2114.

    Article  CAS  Google Scholar 

  • Klabunde T, Hessler G . (2002). Drug design strategies for targeting G-protein-coupled receptors. Chembiochem 3: 928–944.

    Article  CAS  Google Scholar 

  • Koh JY, Palmer E, Cotman CW . (1991). Activation of the metabotropic glutamate receptor attenuates N-methyl-D-aspartate neurotoxicity in cortical cultures. Proc Natl Acad Sci USA 88: 9431–9435.

    Article  CAS  Google Scholar 

  • Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV et al. (1999). A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285: 1733–1737.

    Article  CAS  Google Scholar 

  • Kwon YG, Min JK, Kim KM, Lee DJ, Billiar TR, Kim YM . (2001). Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J Biol Chem 276: 10627–10633.

    Article  CAS  Google Scholar 

  • Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN . (1998). Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273: 33048–33053.

    Article  CAS  Google Scholar 

  • Li DW, Liu JP, Schmid PC, Schlosser R, Feng H, Liu WB et al. (2006). Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities. Oncogene 25: 3006–3022.

    Article  CAS  Google Scholar 

  • Marchenko ND, Zaika A, Moll UM . (2000). Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275: 16202–16212.

    Article  CAS  Google Scholar 

  • Marinissen MJ, Gutkind JS . (2001). G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22: 368–376.

    Article  CAS  Google Scholar 

  • Meek DW . (1999). Mechanisms of switching on p53: a role for covalent modification? Oncogene 18: 7666–7675.

    Article  CAS  Google Scholar 

  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA et al. (1994). Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805.

    CAS  PubMed  Google Scholar 

  • Moll UM, Wolff S, Speidel D, Deppert W . (2005). Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17: 631–636.

    Article  CAS  Google Scholar 

  • Murga C, Laguinge L, Wetzker R, Cuadrado A, Gutkind JS . (1998). Activation of Akt/protein kinase B by G protein-coupled receptors. A role for alpha and beta gamma subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinasegamma. J Biol Chem 273: 19080–19085.

    Article  CAS  Google Scholar 

  • Murph MM, Hurst-Kennedy J, Newton V, Brindley DN, Radhakrishna H . (2007). Lysophosphatidic acid decreases the nuclear localization and cellular abundance of the p53 tumor suppressor in A549 lung carcinoma cells. Mol Cancer Res 5: 1201–1211.

    Article  CAS  Google Scholar 

  • Nakano K, Vousden KH . (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7: 683–694.

    Article  CAS  Google Scholar 

  • Nemajerova A, Erster S, Moll UM . (2005). The post-translational phosphorylation and acetylation modification profile is not the determining factor in targeting endogenous stress-induced p53 to mitochondria. Cell Death Differ 12: 197–200.

    Article  CAS  Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288: 1053–1058.

    Article  CAS  Google Scholar 

  • Park BS, Song YS, Yee SB, Lee BG, Seo SY, Park YC et al. (2005). Phospho-ser 15-p53 translocates into mitochondria and interacts with Bcl-2 and Bcl-xL in eugenol-induced apoptosis. Apoptosis 10: 193–200.

    Article  CAS  Google Scholar 

  • Paulsen MT, Starks AM, Derheimer FA, Hanasoge S, Li L, Dixon JE et al. (2006). The p53-targeting human phosphatase hCdc14A interacts with the Cdk1/cyclin B complex and is differentially expressed in human cancers. Mol Cancer 5: 25.

    Article  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A et al. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12: 2831–2841.

    Article  CAS  Google Scholar 

  • Sayan BS, Sayan AE, Knight RA, Melino G, Cohen GM . (2006). p53 is cleaved by caspases generating fragments localizing to mitochondria. J Biol Chem 281: 13566–13573.

    Article  CAS  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C . (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.

    Article  CAS  Google Scholar 

  • Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB . (1997). DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11: 3471–3481.

    Article  CAS  Google Scholar 

  • Song P, Sekhon HS, Lu A, Arredondo J, Sauer D, Gravett C et al. (2007). M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res 67: 3936–3944.

    Article  CAS  Google Scholar 

  • Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I et al. (2006). Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2: 474–479.

    Article  CAS  Google Scholar 

  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY et al. (1999). A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13: 152–157.

    Article  CAS  Google Scholar 

  • Tobin AB, Budd DC . (2003). The anti-apoptotic response of the Gq/11-coupled muscarinic receptor family. Biochem Soc Trans 31: 1182–1185.

    Article  CAS  Google Scholar 

  • Ullrich SJ, Mercer WE, Appella E . (1992). Human wild-type p53 adopts a unique conformational and phosphorylation state in vivo during growth arrest of glioblastoma cells. Oncogene 7: 1635–1643.

    CAS  PubMed  Google Scholar 

  • Unger T, Juven-Gershon T, Moallem E, Berger M, Vogt Sionov R, Lozano G et al. (1999). Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 18: 1805–1814.

    Article  CAS  Google Scholar 

  • van Koppen CJ, Kaiser B . (2003). Regulation of muscarinic acetylcholine receptor signaling. Pharmacol Ther 98: 197–220.

    Article  CAS  Google Scholar 

  • Vichalkovski A, Baltensperger K, Thomann D, Porzig H . (2005). Two different pathways link G-protein-coupled receptors with tyrosine kinases for the modulation of growth and survival in human hematopoietic progenitor cells. Cell Signal 17: 447–459.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  Google Scholar 

  • Yan GM, Lin SZ, Irwin RP, Paul SM . (1995). Activation of muscarinic cholinergic receptors blocks apoptosis of cultured cerebellar granule neurons. Mol Pharmacol 47: 248–257.

    CAS  PubMed  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B . (1999). Identification and classification of p53-regulated genes. Proc Natl Acad Sci USA 96: 14517–14522.

    Article  CAS  Google Scholar 

  • Zhou Y, Larsen PH, Hao C, Yong VW . (2002). CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 277: 49481–49487.

    Article  CAS  Google Scholar 

  • Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP . (2001). Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 98: 1607–1612.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust for their support (Grants 073480 and 047600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A B Tobin.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solyakov, L., Sayan, E., Riley, J. et al. Regulation of p53 expression, phosphorylation and subcellular localization by a G-protein-coupled receptor. Oncogene 28, 3619–3630 (2009). https://doi.org/10.1038/onc.2009.225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.225

Keywords

This article is cited by

Search

Quick links