Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma

Abstract

The identification of target mRNAs is a key step for assessing the role of aberrantly expressed microRNAs in human cancer. MiR-221 is upregulated in human hepatocellular carcinoma (HCC) as well as in other malignancies. One proven target of miR-221 is CDKN1B/p27, whose downregulation affects HCC prognosis. Here, we proved that the cyclin-dependent kinase inhibitor (CDKI) CDKN1C/p57 is also a direct target of miR-221. Indeed, downregulation of both CDKN1B/p27 and CDKN1C/p57 occurs in response to miR-221 transfection into HCC-derived cells and a significant upregulation of both CDKN1B/p27 and CDKN1C/p57 occurs in response to antimiR-221 transfection. A direct interaction of miR-221 with a target site on the 3′ UTR of CDKN1C/p57 mRNA was also demonstrated. By controlling these two CDKIs, upregulation of miR-221 can promote growth of HCC cells by increasing the number of cells in S-phase. To assess the relevance of these studies in primary tumors, matched HCC and cirrhosis samples were assayed for miR-221, for CDKN1B/p27 and CDKN1C/p57 expression. MiR-221 was upregulated in 71% of HCCs, whereas CDKN1B/p27 and CDKN1C/p57 proteins were downregulated in 77% of cases. A significant inverse correlation between miR-221 and both CDKN1B/p27 and CDKN1C/p57 was found in HCCs. In conclusion, we suggest that miR-221 has an oncogenic function in hepatocarcinogenesis by targeting CDKN1B/p27 and CDKN1C/p57, hence promoting proliferation by controlling cell-cycle inhibitors. These findings establish a basis toward the development of therapeutic strategies aimed at blocking miR-221 in HCC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A et al. (2006). Phase II study of Sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 24: 4293–4300.

    Article  CAS  PubMed  Google Scholar 

  • Bolondi L . (2003). Screening for hepatocellular carcinoma in cirrhosis. J Hepatol 39: 1076–1084.

    Article  PubMed  Google Scholar 

  • Bosch FX, Ribes J, Diaz M, Cleries R . (2004). Primary liver cancer: worldwide incidence and trends. Gastroenterology 127: S5–S16.

    Article  PubMed  Google Scholar 

  • Bruix J, Sherman M . (2005). Practice guidelines committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology 42: 1208–1236.

    Article  PubMed  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA signatures in human cancer. Nat Rev Cancer 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  • Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu GC, Sabatino G et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334: 1351–1358.

    Article  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Meyer N, Day CD, Khatod K, Maher ER, Cooper W, Reik W et al. (2003). Silencing of CDKN1C (p57/KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Widemann syndrome. J Med Genet 40: 797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmonson HA, Steiner PE . (1954). Primary carcinoma of the liver. A study of 100 cases among 48.900 necropsies. Cancer 7: 462–503.

    Article  Google Scholar 

  • Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102: 18081–18086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA et al. (2007). MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting CDKN1B/p27. J Biol Chem 282: 23716–23724.

    Article  CAS  PubMed  Google Scholar 

  • Gillies JK, Lorimer IA . (2007). Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6: 2005–2009.

    Article  CAS  PubMed  Google Scholar 

  • Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P et al. (2007). Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25: 387–392.

    Article  CAS  PubMed  Google Scholar 

  • Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG et al. (2007). Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67: 6092–6099.

    Article  CAS  PubMed  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S et al. (2005). The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102: 19075–19080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui AM, Sun L, Kanai Y, Sakamoto M, Hirohashi S . (1998). Reduced p27Kip1 expression in hepatocellular carcinomas. Cancer Lett 132: 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Takeda T, Sakon M, Tsujimoto M, Monden M, Matsuura N . (2001). Expression of CDKN1C/p57 protein in hepatocellular carcinoma. Oncology 61: 221–225.

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). Ras is regulated by let-7 microRNA family. Cell 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685–689.

    Article  PubMed  Google Scholar 

  • Le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A et al. (2007). Regulation of the CDKN1B/p27 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26: 3699–3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL et al. (2006). Expression profiling identifies microRNA signatures in pancreatic cancer. Int J Cancer 120: 1046–1054.

    Article  Google Scholar 

  • Lee MH, Yang HY . (2001). Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci 58: 1907–1922.

    Article  CAS  PubMed  Google Scholar 

  • Lei PP, Zhang ZJ, Shen LJ, Li JY, Zou Q, Zhang HX . (2005). Expression and hypermethylation of p27 kip1 in hepatocarcinogenesis. World J Gastroenterol 11: 4587–9451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lencioni R, Cioni D, Della Pina C, Crocetti L, Bartolozzi C . (2005). Imaging diagnosis. Semin Liver Dis 25: 162–170.

    Article  PubMed  Google Scholar 

  • Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Raoul JL, Zeuzem S et al. (2007). Sorafenib improves survival in hepatocellular carcinoma: results of a phase III randomized placebo-controlled trial. ASCO Meeting, Chicago.

  • Nakai S, Masaki T, Shiratori Y, Ohgi T, Morishita A, Kurokohchi K et al. (2002). Expression of p57(KIP2) in hepatocellular carcinoma: relationship between tumor differentiation and patient survival. Int J Oncol 20: 769–775.

    CAS  PubMed  Google Scholar 

  • Nan KJ, Guo H, Ruan ZP, Jing Z, Liu SX . (2005). Expression of CDKN1C/p57 and its relationship with clinicopathology, PCNA and p53 in primary hepatocellular carcinoma. World J Gastroenterol 11: 1237–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan KJ, Jing Z, Gong L . (2004). Expression and altered subcellular localization of the cyclin-dependent kinase inhibitor p27Kip1 in hepatocellular carcinoma. World J Gastroenterol 10: 1425–1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrini M, Ferracin M, Sabbioni S, Croce CM . (2007). MicroRNAs in human cancer: from research to therapy. J Cell Sci 120: 1833–1840.

    Article  CAS  PubMed  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  CAS  PubMed  Google Scholar 

  • Sangiovanni A, Del Ninno E, Fasani P, De Fazio C, Ronchi G, Romeo R et al. (2004). Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. Gastroenterology 126: 1005–1014.

    Article  PubMed  Google Scholar 

  • Schwienbacher C, Gramantieri L, Scelfo R, Veronese A, Calin GA, Bolondi L et al. (2000). Gain of imprinting at chromosome 11p15: a pathogenetic mechanism identified in human hepatocarcinomas. Proc Natl Acad Sci USA 97: 5445–5449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soejima H, Nakagawachi T, Zhao W, Higashimoto K, Urano T, Matsukura S et al. (2004). Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer. Oncogene 23: 4380–4388.

    Article  CAS  PubMed  Google Scholar 

  • Tannapfel A, Grund D, Katalinic A, Uhlmann D, Köckerling F, Haugwitz U et al. (2000). Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int J Cancer 89: 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Visone R, Russo L, Pallante P, De Martino I, Ferrero A, Leone V et al. (2007). MicroRNAs miR-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14: 791–798.

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Frisén J, Lee MH, Massagué J, Barbacid M . (1997). Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 11: 973–983.

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liégeois NJ, Wong C, Finegold M, Hou H, Thompson JC et al. (1997). Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome. Nature 387: 151–158.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC regional grant), by grants from Italian Ministero dell'Università e della Ricerca Scientifica and from Italian Ministero della Salute to MN; by Associazione Italiana per la Ricerca sul Cancro (AIRC regional grant) and Fondazione CARISBO to LB and by Program Project Grants from the National Cancer Institute to CMC and by a Kimmel Foundation Scholar award to GAC. FF is a recipient of a fellowship from Associazione Italiana per la Ricerca sul Cancro (AIRC) and MF is a recipient of a fellowship from Fondazione Italiana per la Ricerca sul Cancro (FIRC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L Gramantieri or M Negrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fornari, F., Gramantieri, L., Ferracin, M. et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27, 5651–5661 (2008). https://doi.org/10.1038/onc.2008.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.178

Keywords

This article is cited by

Search

Quick links