Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleosome dynamics regulates DNA processing

Abstract

The repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. The first step in DSB repair by homologous recombination is the processing of the ends by one of two resection pathways, executed by the Saccharomyces cerevisiae Exo1 and Sgs1–Dna2 machineries. Here we report in vitro and in vivo studies that characterize the impact of chromatin on each resection pathway. We find that efficient resection by the Sgs1–Dna2–dependent machinery requires a nucleosome-free gap adjacent to the DSB. Resection by Exo1 is blocked by nucleosomes, and processing activity can be partially restored by removal of the H2A–H2B dimers. Our study also supports a role for the dynamic incorporation of the H2A.Z histone variant in Exo1 processing, and it further suggests that the two resection pathways require distinct chromatin remodeling events to navigate chromatin structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increasing nucleosome density inhibits resection.
Figure 2: Mononucleosomes inhibit resection pathways differentially.
Figure 3: Increasing free DNA adjacent to a nucleosome enhances the helicase activity of Sgs1.
Figure 4: Nucleosomes act as a barrier to Exo1 DNA resection.
Figure 5: Loss of H2A–H2B dimers and incorporation of H2A.Z dimers promotes chromatin resection by Exo1.
Figure 6: Swr1 stimulates DSB repair through the Exo1 pathway.
Figure 7: Depletion of Swr1 inhibits Exo1 resection.

Similar content being viewed by others

References

  1. Khanna, K.K. & Jackson, S.P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 27, 247–254 (2001).

    Article  CAS  Google Scholar 

  2. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  Google Scholar 

  3. Krogh, B.O. & Symington, L.S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

    Article  CAS  Google Scholar 

  4. Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E. & Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134, 981–994 (2008).

    Article  CAS  Google Scholar 

  5. Mimitou, E.P. & Symington, L.S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774 (2008).

    Article  CAS  Google Scholar 

  6. Gravel, S., Chapman, J.R., Magill, C. & Jackson, S.P. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22, 2767–2772 (2008).

    Article  CAS  Google Scholar 

  7. Budd, M.E., Choe, W.C. & Campbell, J.L. DNA2 encodes a DNA helicase essential for replication of eukaryotic chromosomes. J. Biol. Chem. 270, 26766–26769 (1995).

    Article  CAS  Google Scholar 

  8. Szankasi, P. & Smith, G.R. A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction. Science 267, 1166–1169 (1995).

    Article  CAS  Google Scholar 

  9. Tsubouchi, H. & Ogawa, H. Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerecisiae. Mol. Biol. Cell 11, 2221–2233 (2000).

    Article  CAS  Google Scholar 

  10. Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153–159 (2005).

    Article  CAS  Google Scholar 

  11. Hackett, J.A. & Greider, C.W. End resection initiates genomic instability in the absence of telomerase. Mol. Cell Biol. 23, 8450–8461 (2003).

    Article  CAS  Google Scholar 

  12. Bertuch, A.A. & Lundblad, V. EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae. Genetics 166, 1651–1659 (2004).

    Article  CAS  Google Scholar 

  13. Niu, H. et al. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467, 108–111 (2010).

    Article  CAS  Google Scholar 

  14. Szankasi, P. & Smith, G.R.A. DNA exonuclease induced during meiosis of Schizosaccharomyces pombe. J. Biol. Chem. 267, 3014–3023 (1992).

    CAS  PubMed  Google Scholar 

  15. Tran, P.T., Erdeniz, N., Dudley, S. & Liskay, R.M. Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae. DNA Repair (Amst.) 1, 895–912 (2002).

    Article  CAS  Google Scholar 

  16. Chu, W.K. & Hickson, I.D. RecQ helicases: multifunctional genome caretakers. Nat. Rev. Cancer 9, 644–654 (2009).

    Article  CAS  Google Scholar 

  17. Chai, B., Huang, J., Cairns, B.R. & Laurent, B.C. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19, 1656–1661 (2005).

    Article  CAS  Google Scholar 

  18. Shim, E.Y. et al. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol. Cell Biol. 27, 1602–1613 (2007).

    Article  CAS  Google Scholar 

  19. Osley, M.A., Tsukuda, T. & Nickoloff, J.A. ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat. Res. 618, 65–80 (2007).

    Article  CAS  Google Scholar 

  20. Tsukuda, T. et al. INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair (Amst.) 8, 360–369 (2009).

    Article  CAS  Google Scholar 

  21. Kalocsay, M., Hiller, N.J. & Jentsch, S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell 33, 335–343 (2009).

    Article  CAS  Google Scholar 

  22. Chen, X. et al. The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends. Nature 489, 576–580 (2012).

    Article  CAS  Google Scholar 

  23. Costelloe, T. et al. The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489, 581–584 (2012).

    Article  CAS  Google Scholar 

  24. Papamichos-Chronakis, M., Krebs, J.E. & Peterson, C.L. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 20, 2437–2449 (2006).

    Article  CAS  Google Scholar 

  25. Morillo-Huesca, M., Clemente-Ruiz, M., Andújar, E. & Prado, F. The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z. PLoS ONE 5, e12143 (2010).

    Article  Google Scholar 

  26. Halley, J.E., Kaplan, T., Wang, A.Y., Kobor, M.S. & Rine, J. Roles for H2A.Z and its acetylation in GAL1 transcription and gene induction, but not GAL1-transcriptional memory. PLoS Biol. 8, e1000401 (2010).

    Article  Google Scholar 

  27. Zhang, H., Roberts, D.N. & Cairns, B.R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).

    Article  CAS  Google Scholar 

  28. Watanabe, S., Radman-Livaja, M., Rando, O. & Peterson, C.L. A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 340, 195–199 (2013).

    Article  CAS  Google Scholar 

  29. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  Google Scholar 

  30. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    Article  CAS  Google Scholar 

  31. Shim, E.Y. et al. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol. Cell Biol. 27, 1602–1613 (2007).

    Article  CAS  Google Scholar 

  32. Eggleston, A.K., O'Neill, T.E., Bradbury, E.M. & Kowalczykowski, S.C. Unwinding of nucleosomal DNA by a DNA helicase. J. Biol. Chem. 270, 2024–2031 (1995).

    Article  CAS  Google Scholar 

  33. Finkelstein, I.J., Visnapuu, M.L. & Greene, E.C. Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 468, 983–987 (2010).

    Article  CAS  Google Scholar 

  34. Nimonkar, A.V. et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25, 350–362 (2011).

    Article  CAS  Google Scholar 

  35. Wei, K. et al. Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev. 17, 603–614 (2003).

    Article  CAS  Google Scholar 

  36. Giannattasio, M. et al. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell 40, 50–62 (2010).

    Article  CAS  Google Scholar 

  37. Hombauer, H., Campbell, C.S., Smith, C.E., Desai, A. & Kolodner, R.D. Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 147, 1040–1053 (2011).

    Article  CAS  Google Scholar 

  38. Hombauer, H., Srivatsan, A., Putnam, C.D. & Kolodner, R.D. Mismatch repair, but not heteroduplex rejection, is temporally coupled to DNA replication. Science 334, 1713–1716 (2011).

    Article  CAS  Google Scholar 

  39. Xu, Y. et al. Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol. Cell 48, 723–733 (2012).

    Article  CAS  Google Scholar 

  40. Rangasamy, D. Histone variant H2A.Z can serve as a new target for breast cancer therapy. Curr. Med. Chem. 17, 3155–3161 (2010).

    Article  CAS  Google Scholar 

  41. Sigurdsson, S., Trujillo, K., Song, B., Stratton, S. & Sung, P. Basis for avid homologous DNA strand exchange by human Rad51 and RPA. J. Biol. Chem. 276, 8798–8806 (2001).

    Article  CAS  Google Scholar 

  42. Raynard, S., Bussen, W. & Sung, P.A. A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIα, and BLAP75. J. Biol. Chem. 281, 13861–13864 (2006).

    Article  CAS  Google Scholar 

  43. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999).

    Article  CAS  Google Scholar 

  44. Smith, C.L., Horowitz-Scherer, R., Flanagan, J.F., Woodcock, C.L. & Peterson, C.L. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat. Struct. Biol. 10, 141–145 (2003).

    Article  CAS  Google Scholar 

  45. Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health to N.L.A. (F32 GM096701), C.L.P. (RO1 GM54096) and P.S. (RO1 ES07061). We thank Y. Kwon (Yale University, New Haven, Connecticut, USA) for purified MRX, G. Ira (Baylor University, Houston, Texas, USA) for yeast strains, V. Borde (Institute Curie, Paris, France) for RPA antibody, C. Van (University of Massachusetts Medical School, Worcester, Massachusetts, USA) for help with the degron experiments and M. Liskay (Ohio State University, Columbus, Ohio, USA) for the Exo1 clone.

Author information

Authors and Affiliations

Authors

Contributions

N.L.A. performed all experiments, P.S. and H.N. provided purified resection enzymes, and all authors were involved in data analysis and manuscript preparation.

Corresponding author

Correspondence to Craig L Peterson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2 and Supplementary Note (PDF 1379 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adkins, N., Niu, H., Sung, P. et al. Nucleosome dynamics regulates DNA processing. Nat Struct Mol Biol 20, 836–842 (2013). https://doi.org/10.1038/nsmb.2585

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing