Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H+/Cl exchanger

Abstract

Active exchangers dissipate the gradient of one substrate to accumulate nutrients, export xenobiotics and maintain cellular homeostasis. Mechanistic studies have suggested that two fundamental properties are shared by all exchangers: substrate binding is antagonistic, and coupling is maintained by preventing shuttling of the empty transporter. The CLC H+/Cl exchangers control the homeostasis of cellular compartments in most living organisms, but their transport mechanism remains unclear. We show that substrate binding to CLC-ec1 is synergistic rather than antagonistic: chloride binding induces protonation of a crucial glutamate. The simultaneous binding of H+ and Cl gives rise to a fully loaded state that is incompatible with conventional transport mechanisms. Mutations in the Cl transport pathway identically alter the stoichiometries of H+/Cl exchange and binding. We propose that the thermodynamics of synergistic substrate binding, rather than the kinetics of conformational changes and ion binding, determine the stoichiometry of transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alternating-access transport.
Figure 2: Synergistic binding of H+ and Cl to WT CLC-ec1.
Figure 3: The E148A mutant uncouples Cl and H+ binding.
Figure 4: Cl-coupled H+ binding to the Y445L mutant.
Figure 5: Cl-coupled H+ binding to the E203Q mutant.
Figure 6: Modulation of the free energy of protonation of Glu148 and Glu203 by Cl occupancy of the anion transport pathway.
Figure 7: pH dependence of the Cl half-cycle of CLC-ec1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    Article  CAS  Google Scholar 

  2. Jennings, M.L. Structure and function of the red blood cell anion transport protein. Annu. Rev. Biophys. Biophys. Chem. 18, 397–430 (1989).

    Article  CAS  Google Scholar 

  3. Arkin, I.T. et al. Mechanism of Na+/H+ antiporting. Science 317, 799–803 (2007).

    Article  CAS  Google Scholar 

  4. Khare, D., Oldham, M.L., Orelle, C., Davidson, A.L. & Chen, J. Alternating access in maltose transporter mediated by rigid-body rotations. Mol. Cell 33, 528–536 (2009).

    Article  CAS  Google Scholar 

  5. Shimamura, T. et al. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328, 470–473 (2010).

    Article  CAS  Google Scholar 

  6. Kaback, H.R., Smirnova, I., Kasho, V., Nie, Y. & Zhou, Y. The alternating access transport mechanism in LacY. J. Membr. Biol. 239, 85–93 (2011).

    Article  CAS  Google Scholar 

  7. Radestock, S. & Forrest, L.R. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J. Mol. Biol. 407, 698–715 (2011).

    Article  CAS  Google Scholar 

  8. Milanick, M.A. Ferret red cells: Na/Ca exchange and Na-K-Cl cotransport. Comp. Biochem. Physiol. Comp. Physiol. 102, 619–624 (1992).

    Article  CAS  Google Scholar 

  9. Sekler, I., Lo, R.S. & Kopito, R.R. A conserved glutamate is responsible for ion selectivity and pH dependence of the mammalian anion exchangers AE1 and AE2. J. Biol. Chem. 270, 28751–28758 (1995).

    Article  CAS  Google Scholar 

  10. Beaugé, L. & DiPolo, R. The squid axon Na+/Ca2+ exchanger shows ping-pong kinetics only when the Cai-regulatory site is saturated. Cell. Physiol. Biochem. 23, 37–42 (2009).

    Article  Google Scholar 

  11. Adam, Y., Tayer, N., Rotem, D., Schreiber, G. & Schuldiner, S. The fast release of sticky protons: kinetics of substrate binding and proton release in a multidrug transporter. Proc. Natl. Acad. Sci. USA 104, 17989–17994 (2007).

    Article  CAS  Google Scholar 

  12. Restrepo, D., Cronise, B.L., Snyder, R.B. & Knauf, P.A. A novel method to differentiate between ping-pong and simultaneous exchange kinetics and its application to the anion exchanger of the HL60 cell. J. Gen. Physiol. 100, 825–846 (1992).

    Article  CAS  Google Scholar 

  13. Contreras-Jurado, C., Sanchez-Morito, N., Ruiz-Contreras, A., Gonzalez-Martinez, M.T. & Soler-Diaz, A. Evidence for simultaneous 1Na+:1Mg2+ and ping-pong 2Na+:1Mg2+ exchangers in rat thymocyte. Front. Biosci. 10, 1693–1706 (2005).

    Article  CAS  Google Scholar 

  14. Dutzler, R., Campbell, E.B., Cadene, M., Chait, B.T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

    Article  CAS  Google Scholar 

  15. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).

    Article  CAS  Google Scholar 

  16. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homolog from Pyrococcus horikoshii. Nature 431, 811–818 (2004).

    Article  CAS  Google Scholar 

  17. Yamashita, A., Singh, S.K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homolog of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  CAS  Google Scholar 

  18. Morth, J.P. et al. Crystal structure of the sodium-potassium pump. Nature 450, 1043–1049 (2007).

    Article  CAS  Google Scholar 

  19. Olesen, C. et al. The structural basis of calcium transport by the calcium pump. Nature 450, 1036–1042 (2007).

    Article  CAS  Google Scholar 

  20. Fang, Y. et al. Structure of a prokaryotic virtual proton pump at 3.2-Å resolution. Nature 460, 1040–1043 (2009).

    Article  CAS  Google Scholar 

  21. Shaffer, P.L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science 325, 1010–1014 (2009).

    Article  CAS  Google Scholar 

  22. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homolog of ClC Cl channels. Nature 427, 803–807 (2004).

    Article  CAS  Google Scholar 

  23. Scheel, O., Zdebik, A.A., Lourdel, S. & Jentsch, T.J. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436, 424–427 (2005).

    Article  CAS  Google Scholar 

  24. Picollo, A. & Pusch, M. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436, 420–423 (2005).

    Article  CAS  Google Scholar 

  25. De Angeli, A. et al. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442, 939–942 (2006).

    Article  CAS  Google Scholar 

  26. Graves, A.R., Curran, P., Smith, C. & Mindell, J. The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788 (2008).

    Article  CAS  Google Scholar 

  27. Matsuda, J.J. et al. Overexpression of CLC-3 in HEK293T cells yields novel currents that are pH dependent. Am. J. Physiol. Cell Physiol. 294, C251–262 (2008).

    Article  CAS  Google Scholar 

  28. Accardi, A. et al. Separate ion pathways in a Cl/H+ exchanger. J. Gen. Physiol. 126, 563–570 (2005).

    Article  CAS  Google Scholar 

  29. Feng, L., Campbell, E.B., Hsiung, Y. & MacKinnon, R. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330, 635–641 (2010).

    Article  CAS  Google Scholar 

  30. Zdebik, A.A. et al. Determinants of anion-proton coupling in mammalian endosomal CLC proteins. J. Biol. Chem. 283, 4219–4227 (2008).

    Article  CAS  Google Scholar 

  31. Dutzler, R., Campbell, E.B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003).

    Article  CAS  Google Scholar 

  32. Accardi, A. & Picollo, A. CLC channels and transporters: proteins with borderline personalities. Biochim. Biophys. Acta 1798, 1457–1464 (2010).

    Article  CAS  Google Scholar 

  33. Novarino, G., Weinert, S., Rickheit, G. & Jentsch, T.J. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328, 1398–1401 (2010).

    Article  CAS  Google Scholar 

  34. Baker, B.M. & Murphy, K.P. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys. J. 71, 2049–2055 (1996).

    Article  CAS  Google Scholar 

  35. Petrosian, S.A. & Makhatadze, G.I. Contribution of proton linkage to the thermodynamic stability of the major cold-shock protein of Escherichia coli CspA. Protein Sci. 9, 387–394 (2000).

    Article  CAS  Google Scholar 

  36. Velazquez-Campoy, A. et al. Thermodynamic dissection of the binding energetics of KNI-272, a potent HIV-1 protease inhibitor. Protein Sci. 9, 1801–1809 (2000).

    Article  CAS  Google Scholar 

  37. Picollo, A., Malvezzi, M., Houtman, J. & Accardi, A. Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nat. Struct. Mol. Biol. 16, 1294–1301 (2009).

    Article  CAS  Google Scholar 

  38. Accardi, A., Lobet, S., Williams, C., Miller, C. & Dutzler, R. Synergism between halide binding and proton transport in a CLC-type exchanger. J. Mol. Biol. 362, 691–699 (2006).

    Article  CAS  Google Scholar 

  39. Walden, M. et al. Uncoupling and turnover in a Cl/H+ exchange transporter. J. Gen. Physiol. 129, 317–329 (2007).

    Article  CAS  Google Scholar 

  40. Iyer, R., Iverson, T.M., Accardi, A. & Miller, C. A biological role for prokaryotic ClC chloride channels. Nature 419, 715–718 (2002).

    Article  CAS  Google Scholar 

  41. Accardi, A., Kolmakova-Partensky, L., Williams, C. & Miller, C. Ionic currents mediated by a prokaryotic homolog of CLC Cl channels. J. Gen. Physiol. 123, 109–119 (2004).

    Article  CAS  Google Scholar 

  42. Nguitragool, W. & Miller, C. Uncoupling of a CLC Cl/H+ exchange transporter by polyatomic anions. J. Mol. Biol. 362, 682–690 (2006).

    Article  CAS  Google Scholar 

  43. Lobet, S. & Dutzler, R. Ion-binding properties of the ClC chloride selectivity filter. EMBO J. 25, 24–33 (2006).

    Article  CAS  Google Scholar 

  44. Jenks, W.P. Catalysis in Chemistry and Enzymology. (McGraw Hill Text, 1969).

  45. Zifarelli, G. & Pusch, M. Conversion of the 2 Cl/1 H+ antiporter ClC-5 in a NO3/H+ antiporter by a single point mutation. EMBO J. 28, 175–182 (2009).

    Article  CAS  Google Scholar 

  46. Richard, E.A. & Miller, C. Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. Science 247, 1208–1210 (1990).

    Article  CAS  Google Scholar 

  47. Lísal, J. & Maduke, M. The ClC-0 chloride channel is a 'broken' Cl/H+ antiporter. Nat. Struct. Mol. Biol. 15, 805–810 (2008).

    Article  Google Scholar 

  48. Chen, M.F. & Chen, T.Y. Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels. J. Gen. Physiol. 122, 133–145 (2003).

    Article  CAS  Google Scholar 

  49. Matsuda, J.J., Filali, M., Collins, M., Volk, K. & Lamb, F. The ClC-3 Cl/H+ antiporter becomes uncoupled at low extracellular pH. J. Biol. Chem. 285, 2569–2579 (2010).

    Article  CAS  Google Scholar 

  50. Thomson, J.A. & Ladbury, J.E. in Biocalorimetry 2: Applications of Calorimetry in the Biological Sciences (eds. Ladbury, J.E. & Doyle, M.L.) Ch. 2 (Wiley, 2004).

  51. Fukada, H. & Takahashi, K. Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins 33, 159–166 (1998).

    Article  CAS  Google Scholar 

  52. Maduke, M., Pheasant, D.J. & Miller, C. High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J. Gen. Physiol. 114, 713–722 (1999).

    Article  CAS  Google Scholar 

  53. Jo, S., Kim, T., Iyer, V.G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article  CAS  Google Scholar 

  54. Brooks, B.R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    Article  CAS  Google Scholar 

  55. MacKerell, A.D. Jr. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  Google Scholar 

  56. Boiteux, C. & Bernèche, S. Absence of ion-binding affinity in the putatively inactivated low-[K+] structure of the KcsA potassium channel. Structure 19, 70–79 (2011).

    Article  CAS  Google Scholar 

  57. Souaille, M. & Roux, B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 135, 40–57 (2001).

    Article  CAS  Google Scholar 

  58. Shirts, M.R. & Chodera, J.D. Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 129, 124105 (2008).

    Article  Google Scholar 

  59. Pohorille, A., Jarzynski, C. & Chipot, C. Good practices in free-energy calculations. J. Phys. Chem. B 114, 10235–10253 (2010).

    Article  CAS  Google Scholar 

  60. Faraldo-Gómez, J.D. & Roux, B. Electrostatics of ion stabilization in a ClC chloride channel homolog from Escherichia coli. J. Mol. Biol. 339, 981–1000 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank C. Miller (Brandeis University) for the gift of 36Cl and D. Posson, D. Basilio, M. Malvezzi, C. Nimigean and H. Weinstein for helpful discussions and comments on the manuscript. This work was supported by grants from the National Institutes of Health (1R01GM085232 to A.A.) and by a grant from the Swiss National Science Foundation (SNF-Professorship #118928 to S.B.). Y.X. is supported by the China Scholarship Council. Part of the simulations were performed using the facilities of the Swiss National Supercomputing Centre (CSCS).

Author information

Authors and Affiliations

Authors

Contributions

A.P. performed the ITC measurements; A.A. and A.P. performed the flux experiments and analyzed data; Y.X., N.J. and S.B. performed and analyzed the simulations; A.A. designed research and wrote the paper; all authors contributed to the editing of the manuscript.

Corresponding authors

Correspondence to Simon Bernèche or Alessio Accardi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Tables

Supplementary Figures 1–4 and Supplementary Tables 1–2 (PDF 2230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picollo, A., Xu, Y., Johner, N. et al. Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H+/Cl exchanger. Nat Struct Mol Biol 19, 525–531 (2012). https://doi.org/10.1038/nsmb.2277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing