Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of ligand binding by a c-di-GMP riboswitch

Abstract

The second messenger signaling molecule bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates many processes in bacteria, including motility, pathogenesis and biofilm formation. c-di-GMP–binding riboswitches are important downstream targets in this signaling pathway. Here we report the crystal structure, at 2.7 Å resolution, of a c-di-GMP riboswitch aptamer from Vibrio cholerae bound to c-di-GMP, showing that the ligand binds within a three-helix junction that involves base-pairing and extensive base-stacking. The symmetric c-di-GMP is recognized asymmetrically with respect to both the bases and the backbone. A mutant aptamer was engineered that preferentially binds the candidate signaling molecule c-di-AMP over c-di-GMP. Kinetic and structural data suggest that genetic regulation by the c-di-GMP riboswitch is kinetically controlled and that gene expression is modulated through the stabilization of a previously unidentified P1 helix, illustrating a direct mechanism for c-di-GMP signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the c-di-GMP riboswitch aptamer.
Figure 2: Recognition of c-di-GMP by the riboswitch.
Figure 3: Affinity and rate measurements for c-di-GMP binding to wild-type and mutant riboswitches.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7, 263–273 (2009).

    Article  CAS  Google Scholar 

  2. Römling, U. & Amikam, D. Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol. 9, 218–228 (2006).

    Article  Google Scholar 

  3. Tamayo, R., Pratt, J.T. & Camilli, A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu. Rev. Microbiol. 61, 131–148 (2007).

    Article  CAS  Google Scholar 

  4. Waters, C.M., Lu, W., Rabinowitz, J.D. & Bassler, B. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J. Bacteriol. 190, 2527–2536 (2008).

    Article  CAS  Google Scholar 

  5. Fong, J.C. & Yildiz, F. Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J. Bacteriol. 190, 6646–6659 (2008).

    Article  CAS  Google Scholar 

  6. Jenal, U. & Malone, J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40, 385–407 (2006).

    Article  CAS  Google Scholar 

  7. Ryan, R., Fouhy, Y., Lucey, J. & Dow, J.M. Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J. Bacteriol. 188, 8327–8334 (2006).

    Article  CAS  Google Scholar 

  8. Sudarsan, N. et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411–413 (2008).

    Article  CAS  Google Scholar 

  9. Roth, A. & Breaker, R.R. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78, 305–334 (2009).

    Article  CAS  Google Scholar 

  10. Lim, B., Beyhan, S., Meir, J. & Yildiz, F. Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Mol. Microbiol. 60, 331–348 (2006).

    Article  CAS  Google Scholar 

  11. Beyhan, S. & Yildiz, F. Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signalling pathway. Mol. Microbiol. 63, 995–1007 (2007).

    Article  CAS  Google Scholar 

  12. Ferré-D'Amaré, A.R. & Doudna, J.A. Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J. Mol. Biol. 295, 541–556 (2000).

    Article  Google Scholar 

  13. Galsbøl, F.H. & Simonsen, K. The preparation, separation and characterization of some ammine complexes of Iridium(III). Acta Chem. Scand. 44, 796–801 (1990).

    Article  Google Scholar 

  14. Wickiser, J.K., Cheah, M., Breaker, R. & Crothers, D.M. The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 44, 13404–13414 (2005).

    Article  CAS  Google Scholar 

  15. Wickiser, J.K., Winkler, W., Breaker, R. & Crothers, D.M. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18, 49–60 (2005).

    Article  CAS  Google Scholar 

  16. Witte, G., Hartung, S., Büttner, K. & Hopfner, K.P. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell 30, 167–178 (2008).

    Article  CAS  Google Scholar 

  17. Römling, U. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci. Signal. 1, pe39 (2008).

    Article  Google Scholar 

  18. Amikam, D. & Galperin, M. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22, 3–6 (2006).

    Article  CAS  Google Scholar 

  19. Ryjenkov, D.A., Simm, R., Römling, U. & Gomelsky, M. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281, 30310–30314 (2006).

    Article  CAS  Google Scholar 

  20. Benach, J. et al. The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J. 26, 5153–5166 (2007).

    Article  CAS  Google Scholar 

  21. Christen, M. et al. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 104, 4112–4117 (2007).

    Article  CAS  Google Scholar 

  22. Merighi, M., Lee, V., Hyodo, M., Hayakawa, Y. & Lory, S. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol. 65, 876–895 (2007).

    Article  CAS  Google Scholar 

  23. Pratt, J.T., Tamayo, R., Tischler, A. & Camilli, A. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J. Biol. Chem. 282, 12860–12870 (2007).

    Article  CAS  Google Scholar 

  24. Minasov, G. et al. Crystal structures of YkuI and its complex with second messenger c-di-GMP suggests catalytic mechanism of phosphodiester bond cleavage by EAL domains. J. Biol. Chem. 284, 13174–13184 (2009).

    Article  CAS  Google Scholar 

  25. Barends, T.R.M. et al. Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature 459, 1015–1018 (2009).

    Article  CAS  Google Scholar 

  26. Chan, C. et al. Structural basis of activity and allosteric control of diguanylate cyclase. Proc. Natl. Acad. Sci. USA 101, 17084–17089 (2004).

    Article  CAS  Google Scholar 

  27. Wassmann, P. et al. Structure of BeF3- -modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 15, 915–927 (2007).

    Article  CAS  Google Scholar 

  28. De, N. et al. Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol. 6, e67 (2008).

    Article  Google Scholar 

  29. Winkler, W., Cohen-Chalamish, S. & Breaker, R. An mRNA structure that controls gene expression by binding FMN. Proc. Natl. Acad. Sci. USA 99, 15908–15913 (2002).

    Article  CAS  Google Scholar 

  30. Mandal, M., Boese, B., Barrick, J., Winkler, W. & Breaker, R. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113, 577–586 (2003).

    Article  CAS  Google Scholar 

  31. Winkler, W., Nahvi, A., Sudarsan, N., Barrick, J. & Breaker, R. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat. Struct. Biol. 10, 701–707 (2003).

    Article  CAS  Google Scholar 

  32. Sudarsan, N. et al. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes. Dev. 17, 2688–2697 (2003).

    Article  CAS  Google Scholar 

  33. Leontis, N.B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).

    Article  CAS  Google Scholar 

  34. Cochrane, J.C., Lipchock, S.V. & Strobel, S. Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chem. Biol. 14, 97–105 (2007).

    Article  CAS  Google Scholar 

  35. Hyodo, M. & Hayakawa, Y. An improved method for synthesizing cyclic bis(3′–5′)diguanylic acid (c-di-GMP). Bull. Chem. Soc. Jpn. 77, 2089–2093 (2004).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  37. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  38. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  39. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  40. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  41. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  Google Scholar 

  42. Brunger, A.T. et al. Crystallography & NMR System (CNS), a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  43. Brunger, A.T. Version 1.2 of the Crystallography and NMR System. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

  44. DeLano, W.L. The Pymol Molecular Graphics System. http://pymol.org (2008).

  45. Paul, R. et al. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Gend. Dev. 18, 715–727 (2004).

    Article  CAS  Google Scholar 

  46. Christen, M., Christen, B., Folcher, M., Schauerte, A. & Jenal, U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem. 280, 30829–30837 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Myers and the beamline staff at X25, X12C and X29 at the National Synchrotron Light Source at Brookhaven National Laboratory; M. Strickler, D. Keller, and the Yale Center for Structural Biology core staff; Y. Xiong for data processing help and advice; C. Shanahan, E. Butler, N. Carrasco, J. Cochrane and M. Stahley for help and advice; D. Hiller, J. Davis, E. Lee, N. Sudarsan and other members of the Strobel and Breaker labs for helpful discussions; V. Singh (Strobel lab) for synthesis of iridium hexammine; U. Jenal (University of Basel) for the gift of the PleD* expression plasmid; K.-P. Hopfner (University of Munich) for the gift of the DisA expression plasmid; and G. Reguera (Michigan State University) and B. Bassler (Princeton University) for the gift of V. cholerae genomic DNA. This work was supported by the US National Institutes of Health grant GM02278 and the National Science Foundation grant MCB0544255 to S.A.S.

Author information

Authors and Affiliations

Authors

Contributions

K.D.S. determined the crystal structure, performed biochemical experiments and wrote the manuscript. S.V.L. performed biochemical experiments. T.D.A. performed the updated sequence alignment and performed the in-line probing experiments. J.W. gave critical help in data processing and refinement. R.R.B. and S.A.S. advised on the project. All authors discussed the data and provided comments on the manuscript.

Corresponding author

Correspondence to Scott A Strobel.

Ethics declarations

Competing interests

R.R.B. is a cofounder of BioRelix, a biotechnology company pursuing the development of riboswitches as antibiotics targets.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Data/Discussion and Supplementary Methods (PDF 4959 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K., Lipchock, S., Ames, T. et al. Structural basis of ligand binding by a c-di-GMP riboswitch. Nat Struct Mol Biol 16, 1218–1223 (2009). https://doi.org/10.1038/nsmb.1702

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing