Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis of Pirh2-mediated p53 ubiquitylation

Abstract

Pirh2 (p53-induced RING-H2 domain protein; also known as Rchy1) is an E3 ubiquitin ligase involved in a negative-feedback loop with p53. Using NMR spectroscopy, we show that Pirh2 is a unique cysteine-rich protein comprising three modular domains. The protein binds nine zinc ions using a variety of zinc coordination schemes, including a RING domain and a left-handed β-spiral in which three zinc ions align three consecutive small β-sheets in an interleaved fashion. We show that Pirh2-p53 interaction is dependent on the C-terminal zinc binding module of Pirh2, which binds to the tetramerization domain of p53. As a result, Pirh2 preferentially ubiquitylates the tetrameric form of p53 in vitro and in vivo, suggesting that Pirh2 regulates protein turnover of the transcriptionally active form of p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence and domain organization of Pirh2.
Figure 2: Ribbon representations of the three individual Pirh2 domains and zinc coordination schemes of Pirh2.
Figure 3: Pirh2 interacts with p53 by a two-site binding mode.
Figure 4: Mapping UBE2D2 binding interface.
Figure 5: Pirh2-mediated ubiquitylation of itself and p53.
Figure 6: Ubiquitylation activity of Pirh2 deletion mutants.
Figure 7: Model of a potential ternary complex between Pirh2, p53 and the E2 enzyme UBE2D2.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Vousden, K.H. & Prives, C. P53 and prognosis: new insights and further complexity. Cell 120, 7–10 (2005).

    CAS  PubMed  Google Scholar 

  2. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Michael, D. & Oren, M. The p53-Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 13, 49–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Chene, P. Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nat. Rev. Cancer 3, 102–109 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Leng, R.P. et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112, 779–791 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Dornan, D. et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429, 86–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, D. et al. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121, 1071–1083 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Rajendra, R. et al. Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J. Biol. Chem. 279, 36440–36444 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Duan, W. et al. Expression of Pirh2, a newly identified ubiquitin protein ligase, in lung cancer. J. Natl. Cancer Inst. 96, 1718–1721 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Borden, K.L. & Freemont, P.S. The RING finger domain: a recent example of a sequence-structure family. Curr. Opin. Struct. Biol. 6, 395–401 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Fang, S. & Weissman, A.M. A field guide to ubiquitylation. Cell. Mol. Life Sci. 61, 1546–1561 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Laine, A. et al. Regulation of p53 localization and activity by Ubc13. Mol. Cell. Biol. 26, 8901–8913 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davison, T.S. et al. Structure and functionality of a designed p53 dimer. J. Mol. Biol. 307, 605–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Friedler, A., Veprintsev, D.B., Rutherford, T., von Glos, K.I. & Fersht, A.R. Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53. J. Biol. Chem. 280, 8051–8059 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Joazeiro, C.A. & Weissman, A.M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Eletr, Z.M. & Kuhlman, B. Sequence determinants of E2–E6AP binding affinity and specificity. J. Mol. Biol. 369, 419–428 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dominguez, C. et al. Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. Structure 12, 633–644 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Ayed, A. et al. Latent and active p53 are identical in conformation. Nat. Struct. Biol. 8, 756–760 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kay, L.E. NMR methods for the study of protein structure and dynamics. Biochem. Cell Biol. 75, 1–15 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Bax, A. et al. Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol. 239, 79–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Lemak, A., Steren, C.A., Arrowsmith, C.H. & Llinas, M. Sequence specific resonance assignment via Multicanonical Monte Carlo search using an ABACUS approach. J. Biomol. NMR 41, 29–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Alberts, I.L., Nadassy, K. & Wodak, S.J. Analysis of zinc binding sites in protein crystal structures. Protein Sci. 7, 1700–1716 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Grishaev, A. et al. ABACUS, a direct method for protein NMR structure computation via assembly of fragments. Proteins 61, 36–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Linge, J.P., Williams, M.A., Spronk, C.A., Bonvin, A.M. & Nilges, M. Refinement of protein structures in explicit solvent. Proteins 50, 496–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of proteins structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Bhattacharya, A., Tejero, R. & Montelione, G.T. Evaluating protein structures determined by structural genomics consortia. Proteins 66, 778–795 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Banks, L., Matlashewski, G. & Crawford, L. Isolation of human-p53 specific monoclonal antibodies and their use in the studies of human p53 expression. Eur. J. Biochem. 159, 529–534 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Ayed for helpful comments on the manuscript and members of the Arrowsmith lab for technical advice and discussion. This work was funded by the Canadian Cancer Society through grants from the National Cancer Institute of Canada, the Protein Structure Initiative of the National Institutes of Health (P50-GM62413-01) through the Northeast Structural Genomics Consortium, and the Canada Research Chairs program (to C.H.A.). Y.S. is supported by a fellowship from the Leukemia and Lymphoma Research Society of Canada.

Author information

Authors and Affiliations

Authors

Contributions

Y.S., R.C.L. and E.T. designed and conducted experiments; Y.S., A.L., B.W. and M.S. determined the structures; R.C.L., J.L., S.S. and M.K. collected NMR data; S.D. provided constructs and reagents; and Y.S. and C.H.A. wrote the paper with input from all other authors.

Corresponding author

Correspondence to Cheryl H Arrowsmith.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1567 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, Y., Laister, R., Lemak, A. et al. Molecular basis of Pirh2-mediated p53 ubiquitylation. Nat Struct Mol Biol 15, 1334–1342 (2008). https://doi.org/10.1038/nsmb.1521

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1521

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing