Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CYP17 inhibitors—abiraterone, C17,20-lyase inhibitors and multi-targeting agents

Key Points

  • 17α-Hydroxylase/C17,20-lyase (CYP17) is a steroidogenic enzyme that is central to the production of androgens, and is targeted by abiraterone in men with castration-resistant prostate cancer

  • Abiraterone is a promiscuous drug, interacting with numerous targets that include CYP11B1 and a panel of hepatic CYP enzymes; these interactions explain the adverse effects profile of the drug

  • Furthermore, inhibition of the 17α-hydroxylase activity of CYP17 is responsible for the secondary mineralocorticoid excess observed in men taking abiraterone; selective C17,20-lyase inhibitors might avoid this effect

  • CYP17 inhibitors that interfere with the androgen receptor (AR) might enhance clinical benefit and might result in increased compliance and reduced risk of drug–drug interactions compared with combined regimens

  • Dual inhibitors of CYP17 and CYP11B1 might improve curative effects in patients with mutated ARs that are agonized by cortisol

  • Dual inhibitors that target the C17,20-lyase activity of CYP17 and CYP11B2 might reduce the risks of cardiovascular complications associated with abiraterone use by mitigating increases in aldosterone levels

Abstract

As the first in class steroid 17α-hydroxylase/C17,20-lyase (CYP17) inhibitor, abiraterone acetate (of which the active metabolite is abiraterone) has been shown to improve overall survival in patients with castration-resistant prostate cancer (CRPC)—in those who are chemotherapy-naive and those previously treated with docetaxel. Furthermore, the clinical success of abiraterone demonstrated that CRPC, which has previously been regarded as an androgen-independent disease, is still driven, at least in part, by androgens. More importantly, abiraterone is a 'promiscuous' drug that interacts with a number of targets, which dictate its clinical benefits and adverse effects profile. Besides CYP17 inhibition, abiraterone acts as an antagonist to the androgen receptor and inhibits 3β-hydroxysteroid dehydrogenase—two effects that potentially contribute to its antitumour effects. However, the inhibition of the 17α-hydroxylase activity of CYP17, CYP11B1 and a panel of hepatic CYP enzymes leads to adverse effects and toxicities that include secondary mineralocorticoid excess. Abiraterone is also associated with increased incidence of cardiac disorders. Under such circumstances, development of new CYP17 inhibitors as an additional line of defence is urgently needed. To achieve enhanced clinical benefits, new strategies are being explored that include selective inhibition of the C17,20-lyase activity of CYP17 and multi-targeting strategies that affect androgen synthesis and signalling at different points. Some of these strategies—including the drugs orteronel, VT-464 and galeterone—are supported by preclinical data and are being explored in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The production of androgens, their stimulation of prostate cancer cells and hormonal manipulations.
Figure 2: The central role of CYP17 in the biosynthesis route of steroidal hormones.
Figure 3

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  PubMed  Google Scholar 

  2. van Leeuwen, P. J. et al. Prostate cancer mortality in screen and clinically detected prostate cancer: estimating the screening benefit. Eur. J. Cancer 46, 377–383 (2010).

    Article  PubMed  Google Scholar 

  3. Siegel, R. et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 62, 220–241 (2012).

    Article  PubMed  Google Scholar 

  4. Welch, H. G. & Albertsen, P. C. Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J. Natl Cancer Inst. 101, 1325–1329 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Holmberg, L. et al. A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. N. Engl. J. Med. 347, 781–789 (2002).

    Article  PubMed  Google Scholar 

  6. Parker, C. Active surveillance: towards a new paradigm in the management of early prostate cancer. Lancet Oncol. 5, 101–106 (2004).

    Article  PubMed  Google Scholar 

  7. Bannuru, R. R. et al. Comparative evaluation of radiation treatments for clinically localized prostate cancer: an updated systematic review. Ann. Intern. Med. 155, 171–178 (2011).

    Article  PubMed  Google Scholar 

  8. Meng, M. V. in Current Medical Diagnosis and Treatment 2013 (eds Papadakis, M. A., McPhee, S. J. & Rabow, M. W.) 1630–1638 (The McGraw-Hill Medical, 2013).

    Google Scholar 

  9. Geller, J. Basis for hormonal management of advanced prostate cancer. Cancer 71 (Suppl. 3), 1039–1045 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Imamoto, T. et al. The role of testosterone in the pathogenesis of prostate cancer. Int. J. Urol. 15, 472–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Nilsson, S. et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 8, 587–589 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Fizazi, K. et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377, 813–822 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin, L., Hu, Q. & Hartmann, R. W. Recent progress in pharmaceutical therapies for castration-resistant prostate cancer. Int. J. Mol. Sci. 14, 13958–13978 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Franchimont, P. Regulation of gonadal androgen secretion. Horm. Res. 18, 7–17 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Rainey, W. E. & Nakamura, Y. Regulation of the adrenal androgen biosynthesis. J. Steroid. Biochem. Mol. Biol. 108, 281–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Bolton, E. C. et al. Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev. 21, 2005–2017 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu, M. L. & Kyprianou, N. Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocr. Relat. Cancer 15, 841–849 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Migliaccio, A. et al. Steroid-induced androgen receptor-oestradiol receptor β-Src complex triggers prostate cancer cell proliferation. EMBO J. 19, 5406–5417 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Titus, M. A., Schell, M. J., Lih, F. B., Tomer, K. B. & Mohler, J. L. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res. 11, 4653–4657 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki, H. et al. Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 29, 153–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Hara, T. et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 63, 149–153 (2003).

    CAS  PubMed  Google Scholar 

  23. Zhao, X. Y. et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med. 6, 703–706 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Cai, C. et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res. 71, 6503–6513 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang, K. H. et al. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 108, 13728–13733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mohler, J. L., Titus, M. A. & Wilson, E. M. Potential prostate cancer drug target: bioactivation of androstanediol by conversion to dihydrotestosterone. Clin. Cancer Res. 17, 5844–5849 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Small, E. J., Baron, A. D., Fippin, L. & Apodaca, D. Ketoconazole retains activity in advanced prostate cancer patients with progression despite flutamide withdrawal. J. Urol. 157, 1204–1207 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Attard, G. et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26, 4563–4571 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. DeVore, N. M. & Scott, E. E. Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature 482, 116–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu, Q., Negri, M., Olgen, S. & Hartmann, R. W. The role of fluorine substitution in biphenyl methylene imidazole type CYP17 inhibitors for the treatment of prostate carcinoma. Chem. Med. Chem. 5, 899–910 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Hu, Q., Yin, L., Jagusch, C., Hille, U. E. & Hartmann, R. W. Isopropylidene substitution increases activity and selectivity of biphenyl methylene 4-pyridine type CYP17 inhibitors. J. Med. Chem. 53, 5049–5053 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Hu, Q. et al. Synthesis, biological evaluation, and molecular modeling studies of methylene imidazole substituted biaryls as inhibitors of human 17α-hydroxylase-17,20-lyase (CYP17)—part II: core rigidification and influence of substituents at the methylene bridge. Bioorg. Med. Chem. 16, 7715–7727 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Hille, U. E. et al. Novel CYP17 inhibitors: synthesis, biological evaluation, structure-activity relationships and modelling of methoxy- and hydroxy-substituted methyleneimidazolyl biphenyls. Eur. J. Med. Chem. 44, 2765–2775 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Pinto-Bazurco Mendieta, M. A. et al. CYP17 inhibitors. Annulations of additional rings in methylene imidazole substituted biphenyls: synthesis, biological evaluation and molecular modelling. Arch. Pharm. (Weinheim) 341, 597–609 (2008).

    Article  CAS  Google Scholar 

  36. Jagusch, C. et al. Synthesis, biological evaluation and molecular modelling studies of methyleneimidazole substituted biaryls as inhibitors of human 17α-hydroxylase-17,20-lyase (CYP17). Part I: heterocyclic modifications of the core structure. Bioorg. Med. Chem. 16, 1992–2010 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Abadi, A. H., Abou-Seri, S. M., Hu, Q., Negri, M. & Hartmann, R. W. Synthesis and biological evaluation of imidazolylmethylacridones as cytochrome P-450 enzymes inhibitors. Med. Chem. Comm. 3, 663–666 (2012).

    Article  CAS  Google Scholar 

  38. Hille, U. E. et al. Steroidogenic cytochrome P450 (CYP) enzymes as drug targets: combining substructures of known CYP inhibitors leads to compounds with different inhibitory profile. C. R. Chim. 12, 1117–1126 (2009).

    Article  CAS  Google Scholar 

  39. Yin, L. & Hu, Q. Drug discovery for breast cancer and coinstantaneous cardiovascular disease: what is the future? Future Med. Chem. 5, 359–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Yin, L. et al. Novel imidazol-1-ylmethyl substituted 1,2,5,6-tetrahydropyrrolo[3,2,1-ij]quinolin-4-ones as potent and selective CYP11B1 inhibitors for the treatment of Cushing's syndrome. J. Med. Chem. 55, 6629–6633 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Emmerich, J., Hu, Q., Hanke, N. & Hartmann, R. W. Cushing's syndrome: development of highly potent and selective CYP11B1 inhibitors of the (pyridylmethyl)pyridine type. J. Med. Chem. 56, 6022–6032 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Gobbi, S. et al. Modulation of cytochromes P450 with xanthone-based molecules: from aromatase to aldosterone synthase and steroid 1β-hydroxylase inhibition. J. Med. Chem. 56, 1723–1729 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Yin, L., Hu, Q. & Hartmann, R. W. 3-Pyridinyl substituted aliphatic cycles as CYP11B2 inhibitors: aromaticity abolishment of the core significantly increased selectivity over CYP1A2. PLoS ONE 7, e48048 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu, Q., Yin, L. & Hartmann, R. W. Selective dual inhibitors of CYP19 and CYP11B2: targeting cardiovascular diseases hiding in the shadow of breast cancer. J. Med. Chem. 55, 7080–7089 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Yin, L., Hu, Q. & Hartmann, R. W. Tetrahydropyrroloquinolinone type dual inhibitors of aromatase/aldosterone synthase as a novel strategy for breast cancer patients with elevated cardiovascular risks. J. Med. Chem. 56, 460–470 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Jarman, M., Barrie, S. E. & Llera, J. M. The 16,17-double bond is needed for irreversible inhibition of human cytochrome P45017α by abiraterone (17-(3-pyridyl)androsta-5,16-dien-3β-ol) and related steroidal inhibitors. J. Med. Chem. 41, 5375–5381 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Janseen. Highlights of prescribing information: Zytiga®[online], (2013).

  48. Ryan, C. J. et al. Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy. J. Clin. Oncol. 28, 1481–1488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Acharya, M. et al. A phase I, open-label, single-dose, mass balance study of 14C-labeled abiraterone acetate in healthy male subjects. Xenobiotica 43, 379–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. O'Donnell, A. et al. Hormonal impact of the 17α-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br. J. Cancer 90, 2317–2325 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tannock, I. et al. Treatment of metastatic prostatic cancer with low-dose prednisone: evaluation of pain and quality of life as pragmatic indices of response. J. Clin. Oncol. 7, 590–597 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Attard, G. et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 27, 3742–3748 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Ryan, C. J. et al. Phase II study of abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer displaying bone flare discordant with serologic response. Clin. Cancer Res. 17, 4854–4861 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Danila, D. C. et al. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J. Clin. Oncol. 28, 1496–1501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Reid, A. H. et al. Significant and sustained antitumor activity in postdocetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J. Clin. Oncol. 28, 1489–1495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Logothetis, C. J. et al. Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial. Lancet Oncol. 13, 1210–1217 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Sternberg, C. N. et al. Effect of abiraterone acetate on fatigue in patients with metastatic castration-resistant prostate cancer after docetaxel chemotherapy. Ann. Oncol. 24, 1017–1025 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Efstathiou, E. et al. Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone. J. Clin. Oncol. 30, 637–643 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  61. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fizazi, K. et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 13, 983–992 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  64. Small, E. J. et al. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J. Clin. Oncol. 22, 1025–1033 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Eisner, J. R. et al. Assessment of steroid hormones upstream of P450c17 (CYP17) in chemically castrate male rhesus monkeys following treatment with the CYP17 inhibitors VT-464 and abiraterone acetate (AA) [abstract]. Endocr. Rev. 33 (03_MeetingAbstracts), SAT-266 (2012).

  66. Potter, G. A., Barrie, S. E., Jarman, M. & Rowlands, M. G. Novel steroidal inhibitors of human cytochrome P450 17α-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer. J. Med. Chem. 38, 2463–2471 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Li, R. et al. Abiraterone inhibits 3β-hydroxysteroid dehydrogenase: a rationale for increasing drug exposure in castration-resistant prostate cancer. Clin. Cancer Res. 18, 3571–3579 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Soifer, H. S. et al. Direct regulation of androgen receptor activity by potent CYP17 inhibitors in prostate cancer cells. J. Biol. Chem. 287, 3777–3787 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Yamaoka, M. et al. Orteronel (TAK-700), a novel non-steroidal 17,20-lyase inhibitor: effects on steroid synthesis in human and monkey adrenal cells and serum steroid levels in cynomolgus monkeys. J. Steroid Biochem. Mol. Biol. 129, 115–128 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Kaku, T. et al. Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer. Bioorg. Med. Chem. 19, 6383–6399 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Dreicer, R. et al. Safety, pharmacokinetics, and efficacy of TAK-700 in metastatic castration-resistant prostate cancer: a phase I/II, open-label study [abstract 3084]. J. Clin. Oncol. 28 (Suppl. 15), a3084 (2010).

    Article  Google Scholar 

  72. Agus, D. B. et al. Safety, efficacy, and pharmacodynamics of the investigational agent orteronel (TAK-700) in metastatic castration-resistant prostate cancer (mCRPC): updated data from a phase I/II study [abstract 98]. J. Clin. Oncol. 30 (Suppl. 5), a98 (2012).

    Article  Google Scholar 

  73. George, D. J. et al. Safety and activity of the investigational agent orteronel (ortl) without prednisone in men with nonmetastatic castration-resistant prostate cancer (nmCRPC) and rising prostate-specific antigen (PSA): updated results of a phase II study [abstract 4549]. J. Clin. Oncol. 30 (Suppl. 5), a4549 (2012).

    Article  Google Scholar 

  74. Dreicer, R. et al. A phase III, randomized, double-blind, multicenter trial comparing the investigational agent orteronel (TAK-700) plus prednisone (P) with placebo plus P in patients with metastatic castration-resistant prostate cancer (mCRPC) that has progressed during or following docetaxel-based therapy [abstract TPS4693]. J. Clin. Oncol. 30 (Suppl. 15), aTPS4693 (2012).

    Article  Google Scholar 

  75. Eisner, J. R. et al. VT-464: a novel, selective inhibitor of P450c17(CYP17)-17,20 lyase for castration-refractory prostate cancer (CRPC) [abstract 198]. J. Clin. Oncol. 30 (Suppl. 5), a198 (2012).

    Article  Google Scholar 

  76. Abbott, D. H. et al. Plasma steroid concentrations in male rhesus monkeys following treatment with the P450c17 (CYP17) inhibitors VT-464 and abiraterone acetate: a comparison to human 17,20-Lyase (lyase) and combined lyase/17α-hydroxylase (hydroxylase) deficiencies [abstract]. Endocr. Rev. 33 (03_MeetingAbstracts), SAT-256 (2012).

  77. Pisle, S. T. et al. Activity of VT-464, a selective CYP17 lyase inhibitor, in the LNCaP prostate cancer xenograft model [abstract 64]. J. Clin. Oncol. 30 (Suppl. 5), a64 (2012).

    Article  Google Scholar 

  78. European Medicines Agency. ClinicalTrialsRegister.eu [online], (2013).

  79. Mostaghel, E. A. et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin. Cancer Res. 17, 5913–5925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Handratta, V. D. et al. Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. J. Med. Chem. 48, 2972–2984 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Vasaitis, T. et al. Androgen receptor inactivation contributes to antitumor efficacy of CYP17 inhibitor VN/124-1 in prostate cancer. Mol. Cancer Ther. 7, 2348–2357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bruno, R., Gover, T., Burger, A., Brodie, A. M. H. & Njar, V. C. O. 17α-Hydroxylase/17,20 lyase inhibitor VN/124–1 inhibits growth of androgen independent prostate cancer cells via induction of the endoplasmic reticulum stress response. Mol. Cancer Ther. 7, 2828–2836 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bruno, R. D. et al. Synthesis and biological evaluations of putative metabolically stable analogs of VN/124-1 (TOK-001): head to head anti-tumor efficacy evaluation of VN/124-1 (TOK-001) and abiraterone in LAPC-4 human prostate cancer xenograft model. Steroids 76, 1268–1279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. American Association for Cancer Research. Early clinical data show galeterone safe, effective against prostate cancer [online], (2012).

  85. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  86. Dutt, S. S. & Gao, A. C. Molecular mechanisms of castration-resistant prostate cancer progression. Future Oncol. 5, 1403–1413 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Hu, Q., Jagusch, C., Hille, U. E., Haupenthal, J. & Hartmann, R. W. Replacement of imidazolyl by pyridyl in biphenylmethylenes results in selective CYP17 and dual CYP17/CYP11B1 inhibitors for the treatment of prostate cancer. J. Med. Chem. 53, 5749–5758 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Pinto-Bazurco Mendieta, M. A., Hu, Q., Engel, M. & Hartmann, R. W. Highly potent and selective non-steroidal dual inhibitors of CYP17/CYP11B2 for the treatment of prostate cancer to reduce risks of cardiovascular diseases. J. Med. Chem. 56, 6101–6107 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Efstathiou, J. A. et al. Cardiovascular mortality after androgen deprivation therapy for locally advanced prostate cancer: RTOG 85-31. J. Clin. Oncol. 27, 92–99 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  91. Hu, Q. & Hartmann, R. W. in Cancer Drug Design and Discovery (ed. Neidle, S.) 319–356 (Academic Press, 2014).

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Prof. Dr Rolf W. Hartmann for leading them into the field of steroidogenic CYP enzymes.

Author information

Authors and Affiliations

Authors

Contributions

Q. Hu researched the data for the article. Both authors discussed the article's content, wrote the manuscript and edited it before submission.

Corresponding author

Correspondence to Qingzhong Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L., Hu, Q. CYP17 inhibitors—abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nat Rev Urol 11, 32–42 (2014). https://doi.org/10.1038/nrurol.2013.274

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing