Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signals to promote myelin formation and repair

Abstract

The myelin sheath wraps large axons in both the CNS and the PNS, and is a key determinant of efficient axonal function and health. Myelin is targeted in a series of diseases, notably multiple sclerosis (MS). In MS, demyelination is associated with progressive axonal damage, which determines the level of patient disability. The few treatments that are available for combating myelin damage in MS and related disorders, which largely comprise anti-inflammatory drugs, only show limited efficacy in subsets of patients. More-effective treatment of myelin disorders will probably be accomplished by early intervention with combinatorial therapies that target inflammation and other processes—for example, signaling pathways that promote remyelination. Indeed, evidence suggests that such pathways might be impaired in pathology and, hence, contribute to the failure of remyelination in such diseases. In this article, we review the molecular basis of signaling pathways that regulate myelination in the CNS and PNS, with a focus on signals that affect differentiation of myelinating glia. We also discuss factors such as extracellular molecules that act as modulators of these pathways. Finally, we consider the few preclinical and clinical trials of agents that augment this signaling.

Key Points

  • Myelinating glia and their associated axons transmit reciprocal signals that are necessary for the development and maintenance of the myelin–axon unit

  • Both extracellular and intracellular components of myelin–axon signaling pathways are perturbed in myelin diseases, thereby causing axonal damage

  • The level of disability in patients with myelin disorders correlates more with the extent of axonal damage than with the degree of myelin alteration

  • Evidence suggests that insults to myelin or myelinating glia cause secondary axonal damage; thus, myelin or glia are logical targets for early therapeutic intervention

  • Preclinical trials of agents that promote myelination provide hope that combinatorial treatments that target both this process and inflammation can be developed for myelin-related diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The myelin–axon unit.
Figure 2: Axon to glia signaling in myelination during CNS development.
Figure 3: Axon to glia signaling in myelination during PNS development.

Similar content being viewed by others

References

  1. Salzer, J. L., Brophy, P. J. & Peles, E. Molecular domains of myelinated axons in the peripheral nervous system. Glia 56, 1532–1540 (2008).

    PubMed  Google Scholar 

  2. Nave, K. A. & Trapp, B. D. Axon–glial signaling and the glial support of axon function. Annu. Rev. Neurosci. 31, 535–561 (2008).

    CAS  PubMed  Google Scholar 

  3. Bozzali, M. & Wrabetz, L. Axonal signals and oligodendrocyte differentiation. Neurochem. Res. 29, 979–988 (2004).

    CAS  PubMed  Google Scholar 

  4. Simons, M. & Trajkovic, K. Neuron–glia communication in the control of oligodendrocyte function and myelin biogenesis. J. Cell Sci. 119, 4381–4389 (2006).

    CAS  PubMed  Google Scholar 

  5. Woodhoo, A. & Sommer, L. Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia 56, 1481–1490 (2008).

    PubMed  Google Scholar 

  6. Jessen, K. R. & Mirsky, R. Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56, 1552–1565 (2008).

    PubMed  Google Scholar 

  7. Lazzarini, R. A. (Ed.) Myelin Biology and Disorders (Elselvier Academic Press, San Diego, 2004).

    Google Scholar 

  8. Trapp, B. D. & Nave, K. A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 31, 247–269 (2008).

    CAS  PubMed  Google Scholar 

  9. Scherer, S. S. & Wrabetz, L. Molecular mechanisms of inherited demyelinating neuropathies. Glia 56, 1578–1589 (2008).

    PubMed  PubMed Central  Google Scholar 

  10. Galbiati, F. et al. Combined hematopoietic and lentiviral gene-transfer therapies in newborn Twitcher mice reveal contemporaneous neurodegeneration and demyelination in Krabbe disease. J. Neurosci. Res. 87, 1748–1759 (2009).

    CAS  PubMed  Google Scholar 

  11. Murinson, B. B., Archer, D. R., Li, Y. & Griffin, J. W. Degeneration of myelinated efferent fibers prompts mitosis in Remak Schwann cells of uninjured C-fiber afferents. J. Neurosci. 25, 1179–1187 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lopez-Diego, R. S. & Weiner, H. L. Novel therapeutic strategies for multiple sclerosis—a multifaceted adversary. Nat. Rev. Drug Discov. 7, 909–925 (2008).

    CAS  PubMed  Google Scholar 

  13. Franklin, R. J. & ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008).

    CAS  PubMed  Google Scholar 

  14. Langley, J. N. & Anderson, H. K. On the union of the fifth cervical nerve with the superior cervical ganglion. J. Physiol. 30, 439–442 (1904).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Weinberg, H. J. & Spencer, P. S. Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production. Brain Res. 113, 363–378 (1976).

    CAS  PubMed  Google Scholar 

  16. Aguayo, A. J., Epps, J., Charron, L. & Bray, G. M. Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: quantitative microscopy and radioautography. Brain Res. 104, 1–20 (1976).

    CAS  PubMed  Google Scholar 

  17. Lubetzki, C. et al. Even in culture, oligodendrocytes myelinate solely axons. Proc. Natl Acad. Sci. USA 90, 6820–6824 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Duncan, D. A relation between axon diameter and myelination determined by measurement of myelinated spinal root fibers. J. Comp. Neurol. 60, 437–471 (1934).

    Google Scholar 

  19. Voyvodic, J. T. Target size regulates calibre and myelination of sympathetic axons. Nature 342, 430–433 (1989).

    CAS  PubMed  Google Scholar 

  20. Friede, R. L. & Samorajski, T. Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves of mice. J. Comp. Neurol. 130, 223–231 (1967).

    CAS  PubMed  Google Scholar 

  21. Gyllensten, L. & Malmfors, T. Myelinization of the optic nerve and its dependence on visual function—a quantitative investigation in mice. J. Embryol. Exp. Morphol. 11, 255–266 (1963).

    CAS  PubMed  Google Scholar 

  22. Tauber, H., Waehneldt, T. V. & Neuhoff, V. Myelination in rabbit optic nerves is accelerated by artificial eye opening. Neurosci. Lett. 16, 235–238 (1980).

    CAS  PubMed  Google Scholar 

  23. Stevens, B., Porta, S., Haak, L. L., Gallo, V. & Fields, R. D. Adenosine: a neuron–glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36, 855–868 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Stevens, B., Tanner, S. & Fields, R. D. Control of myelination by specific patterns of neural impulses. J. Neurosci. 18, 9303–9311 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Demerens, C. et al. Induction of myelination in the central nervous system by electrical activity. Proc. Natl Acad. Sci. USA 93, 9887–9892 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Birchmeier, C. & Nave, K. A. Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56, 1491–1497 (2008).

    PubMed  Google Scholar 

  27. Falls, D. L. Neuregulins and the neuromuscular system: 10 years of answers and questions. J. Neurocytol. 32, 619–647 (2003).

    CAS  PubMed  Google Scholar 

  28. Mei, L. & Xiong, W. C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat. Rev. Neurosci. 9, 437–452 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Michailov, G. V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).

    CAS  PubMed  Google Scholar 

  30. Taveggia, C. et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–694 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vartanian, T., Fischbach, G. & Miller, R. Failure of spinal cord oligodendrocyte development in mice lacking neuregulin. Proc. Natl Acad. Sci. USA 96, 731–745 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sussman, C. R., Dyer, K. L., Marchionni, M. & Miller, R. H. Local control of oligodendrocyte development in isolated dorsal mouse spinal cord. J. Neurosci. Res. 59, 413–420 (2000).

    CAS  PubMed  Google Scholar 

  33. Sussman, C. R., Vartanian, T. & Miller, R. H. The ErbB4 neuregulin receptor mediates suppression of oligodendrocyte maturation. J. Neurosci. 25, 5757–5762 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Roy, K. et al. Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc. Natl Acad. Sci. USA 104, 8131–8136 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Taveggia, C. et al. Type III neuregulin-1 promotes oligodendrocyte myelination. Glia 56, 284–293 (2008).

    PubMed  Google Scholar 

  36. Brinkmann, B. G. et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59, 581–595 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fruttiger, M. et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126, 457–467 (1999).

    CAS  PubMed  Google Scholar 

  38. Chun, S. J., Rasband, M. N., Sidman, R. L., Habib, A. A. & Vartanian, T. Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. J. Cell Biol. 163, 397–408 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sperber, B. R. et al. A unique role for Fyn in CNS myelination. J. Neurosci. 21, 2039–2047 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, H. J. et al. WAVE1 is required for oligodendrocyte morphogenesis and normal CNS myelination. J. Neurosci. 26, 5849–5859 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Atanasoski, S. et al. ErbB2 signaling in Schwann cells is mostly dispensable for maintenance of myelinated peripheral nerves and proliferation of adult Schwann cells after injury. J. Neurosci. 26, 2124–2131 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zanazzi, G. et al. Glial growth factor/neuregulin inhibits Schwann cell myelination and induces demyelination. J. Cell Biol. 152, 1289–1299 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Guertin, A. D., Zhang, D. P., Mak, K. S., Alberta, J. A. & Kim, H. A. Microanatomy of axon/glial signaling during Wallerian degeneration. J. Neurosci. 25, 3478–3487 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Aguirre, A., Dupree, J. L., Mangin, J. M. & Gallo, V. A functional role for EGFR signaling in myelination and remyelination. Nat. Neurosci. 10, 990–1002 (2007).

    CAS  PubMed  Google Scholar 

  45. Yang, P., Baker, K. A. & Hagg, T. The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog. Neurobiol. 79, 73–94 (2006).

    CAS  PubMed  Google Scholar 

  46. Sagane, K. et al. Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice. BMC Neurosci. 6, 33 (2005).

    PubMed  PubMed Central  Google Scholar 

  47. Sagane, K., Ishihama, Y. & Sugimoto, H. LGI1 and LGI4 bind to ADAM22, ADAM23 and ADAM11. Int. J. Biol. Sci. 4, 387–396 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bermingham, J. R. Jr et al. The claw paw mutation reveals a role for Lgi4 in peripheral nerve development. Nat. Neurosci. 9, 76–84 (2006).

    CAS  PubMed  Google Scholar 

  49. Wakatsuki, S., Yumoto, N., Komatsu, K., Araki, T. & Sehara-Fujisawa, A. Roles of meltrin-β/ADAM19 in progression of Schwann cell differentiation and myelination during sciatic nerve regeneration. J. Biol. Chem. 284, 2957–2966 (2009).

    CAS  PubMed  Google Scholar 

  50. Ohno, M. et al. Nardilysin regulates axonal maturation and myelination in the central and peripheral nervous system. Nat. Neurosci. 12, 1506–1513 (2009).

    CAS  PubMed  Google Scholar 

  51. Willem, M. et al. Control of peripheral nerve myelination by the β-secretase BACE1. Science 314, 664–666 (2006).

    CAS  PubMed  Google Scholar 

  52. Hu, X. et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci. 9, 1520–1525 (2006).

    CAS  PubMed  Google Scholar 

  53. Hu, X. et al. Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB J. 22, 2970–2980 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Watkins, T. A., Emery, B., Mulinyawe, S. & Barres, B. A. Distinct stages of myelination regulated by γ-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60, 555–569 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bao, J. et al. Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nat. Neurosci. 7, 1250–1258 (2004).

    CAS  PubMed  Google Scholar 

  56. Bao, J., Wolpowitz, D., Role, L. W. & Talmage, D. A. Back signaling by the Nrg-1 intracellular domain. J. Cell Biol. 161, 1133–1141 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zampieri, N., Xu, C. F., Neubert, T. A. & Chao, M. V. Cleavage of p75 neurotrophin receptor by α-secretase and γ-secretase requires specific receptor domains. J. Biol. Chem. 280, 14563–14571 (2005).

    CAS  PubMed  Google Scholar 

  58. Fortini, M. E. γ-Secretase-mediated proteolysis in cell-surface-receptor signalling. Nat. Rev. Mol. Cell Biol. 3, 673–684 (2002).

    CAS  PubMed  Google Scholar 

  59. Carson, M. J., Behringer, R. R., Brinster, R. L. & McMorris, F. A. Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10, 729–740 (1993).

    CAS  PubMed  Google Scholar 

  60. Ness, J. K., Mitchell, N. E. & Wood, T. L. IGF-I and NT-3 signaling pathways in developing oligodendrocytes: differential regulation and activation of receptors and the downstream effector Akt. Dev. Neurosci. 24, 437–445 (2002).

    CAS  PubMed  Google Scholar 

  61. Swamydas, M., Bessert, D. & Skoff, R. Sexual dimorphism of oligodendrocytes is mediated by differential regulation of signaling pathways. J. Neurosci. Res. 87, 3306–3319 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Flores, A. I. et al. Constitutively active Akt induces enhanced myelination in the CNS. J. Neurosci. 28, 7174–7183 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Narayanan, S. P., Flores, A. I., Wang, F. & Macklin, W. B. Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J. Neurosci. 29, 6860–6870 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tyler, W. A. et al. Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. J. Neurosci. 29, 6367–6378 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wegner, M. A matter of identity: transcriptional control in oligodendrocytes. J. Mol. Neurosci. 35, 3–12 (2008).

    CAS  PubMed  Google Scholar 

  66. Emery, B. et al. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138, 172–185 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Howng, S. Y. et al. ZFP191 is required by oligodendrocytes for CNS myelination. Genes Dev. 24, 301–311 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Svaren, J. & Meijer, D. The molecular machinery of myelin gene transcription in Schwann cells. Glia 56, 1541–1551 (2008).

    PubMed  PubMed Central  Google Scholar 

  69. Mager, G. M. et al. Active gene repression by the Egr2.NAB complex during peripheral nerve myelination. J. Biol. Chem. 283, 18187–18197 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Parkinson, D. B. et al. c-Jun is a negative regulator of myelination. J. Cell Biol. 181, 625–637 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Woodhoo, A. et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat. Neurosci. 12, 839–847 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Giambonini-Brugnoli, G., Buchstaller, J., Sommer, L., Suter, U. & Mantei, N. Distinct disease mechanisms in peripheral neuropathies due to altered peripheral myelin protein 22 gene dosage or a Pmp22 point mutation. Neurobiol. Dis. 18, 656–668 (2005).

    CAS  PubMed  Google Scholar 

  73. Kao, S. C. et al. Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science 323, 651–654 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Graef, I. A. et al. Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113, 657–670 (2003).

    CAS  PubMed  Google Scholar 

  75. Maurel, P. et al. Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. J. Cell Biol. 178, 861–874 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Spiegel, I. et al. A central role for Necl4 (SynCAM4) in Schwann cell–axon interaction and myelination. Nat. Neurosci. 10, 861–869 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ogita, H. & Takai, Y. Nectins and nectin-like molecules: roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life 58, 334–343 (2006).

    CAS  PubMed  Google Scholar 

  78. Chan, J. R. et al. The polarity protein Par-3 directly interacts with p75NTR to regulate myelination. Science 314, 832–836 (2006).

    CAS  PubMed  Google Scholar 

  79. Park, J. et al. Disruption of Nectin-like 1 cell adhesion molecule leads to delayed axonal myelination in the CNS. J. Neurosci. 28, 12815–12819 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pellissier, F., Gerber, A., Bauer, C., Ballivet, M. & Ossipow, V. The adhesion molecule Necl-3/SynCAM-2 localizes to myelinated axons, binds to oligodendrocytes and promotes cell adhesion. BMC Neurosci. 8, 90 (2007).

    PubMed  PubMed Central  Google Scholar 

  81. D'Souza, B., Miyamoto, A. & Weinmaster, G. The many facets of Notch ligands. Oncogene 27, 5148–5167 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. John, G. R. et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat. Med. 8, 1115–1121 (2002).

    CAS  PubMed  Google Scholar 

  83. Wang, S. et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21, 63–75 (1998).

    PubMed  Google Scholar 

  84. Genoud, S. et al. Notch1 control of oligodendrocyte differentiation in the spinal cord. J. Cell Biol. 158, 709–718 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Givogri, M. I. et al. Central nervous system myelination in mice with deficient expression of Notch1 receptor. J. Neurosci. Res. 67, 309–320 (2002).

    CAS  PubMed  Google Scholar 

  86. Zhang, Y. et al. Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc. Natl Acad. Sci. USA 106, 19162–19167 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nakahara, J., Kanekura, K., Nawa, M., Aiso, S. & Suzuki, N. Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis. J. Clin. Invest. 119, 169–181 (2009).

    CAS  PubMed  Google Scholar 

  88. Stidworthy, M. F. et al. Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain 127, 1928–1941 (2004).

    PubMed  Google Scholar 

  89. Hu, Q. D. et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 115, 163–175 (2003).

    CAS  PubMed  Google Scholar 

  90. Morrison, S. J. et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101, 499–510 (2000).

    CAS  PubMed  Google Scholar 

  91. Parkinson, D. B. et al. Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J. Cell Biol. 164, 385–394 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Shen, S. et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat. Neurosci. 11, 1024–1034 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Camelo, S. et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol. 164, 10–21 (2005).

    CAS  PubMed  Google Scholar 

  94. Kim, J. Y. et al. HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat. Neurosci. 13, 180–189 (2010).

    PubMed  Google Scholar 

  95. Lonigro, A. & Devaux, J. J. Disruption of neurofascin and gliomedin at nodes of Ranvier precedes demyelination in experimental allergic neuritis. Brain 132, 260–273 (2009).

    PubMed  Google Scholar 

  96. Howell, O. W. et al. Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain 129, 3173–3185 (2006).

    CAS  PubMed  Google Scholar 

  97. Wolswijk, G. & Balesar, R. Changes in the expression and localization of the paranodal protein Caspr on axons in chronic multiple sclerosis. Brain 126, 1638–1649 (2003).

    PubMed  Google Scholar 

  98. Coman, I. et al. Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129, 3186–3195 (2006).

    CAS  PubMed  Google Scholar 

  99. Arroyo, E. J. et al. Genetic dysmyelination alters the molecular architecture of the nodal region. J. Neurosci. 22, 1726–1737 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Susuki, K. et al. Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J. Neurosci. 27, 3956–3967 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mathey, E. K. et al. Neurofascin as a novel target for autoantibody-mediated axonal injury. J. Exp. Med. 204, 2363–2372 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Eldridge, C. F., Bunge, M. B. & Bunge, R. P. Differentiation of axon-related Schwann cell in vitro: II. Control of myelin formation by basal lamina. J. Neurosci. 9, 625–638 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Eldridge, C. F., Bunge, M. B., Bunge, R. P. & Wood, P. M. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 105, 1023–1034 (1987).

    CAS  PubMed  Google Scholar 

  104. Yu, W. M., Feltri, M. L., Wrabetz, L., Strickland, S. & Chen, Z. L. Schwann cell-specific ablation of laminin γ1 causes apoptosis and prevents proliferation. J. Neurosci. 25, 4463–4472 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang, D. et al. Coordinate control of axon defasciculation and myelination by laminin-2 and -8. J. Cell Biol. 168, 655–666 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Colognato, H. et al. CNS integrins switch growth factor signalling to promote target-dependent survival. Nat. Cell Biol. 4, 833–841 (2002).

    CAS  PubMed  Google Scholar 

  107. Colognato, H., Ramachandrappa, S., Olsen, I. M. & ffrench-Constant, C. Integrins direct Src family kinases to regulate distinct phases of oligodendrocyte development. J. Cell Biol. 167, 365–375 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kramer, E. M., Klein, C., Koch, T., Boytinck, M. & Trotter, J. Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J. Biol. Chem. 274, 29042–29049 (1999).

    CAS  PubMed  Google Scholar 

  109. Relucio, J., Tzvetanova, I. D., Ao, W., Lindquist, S. & Colognato, H. Laminin alters fyn regulatory mechanisms and promotes oligodendrocyte development. J. Neurosci. 29, 11794–11806 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Laursen, L. S., Chan, C. W. & ffrench-Constant, C. An integrin–contactin complex regulates CNS myelination by differential Fyn phosphorylation. J. Neurosci. 29, 9174–9185 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Haines, J. D., Fragoso, G., Hossain, S., Mushynski, W. E. & Almazan, G. p38 Mitogen-activated protein kinase regulates myelination. J. Mol. Neurosci. 35, 23–33 (2008).

    CAS  PubMed  Google Scholar 

  112. Camara, J. et al. Integrin-mediated axoglial interactions initiate myelination in the central nervous system. J. Cell Biol. 185, 699–712 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Barros, C. S. et al. β1 integrins are required for normal CNS myelination and promote AKT-dependent myelin outgrowth. Development 136, 2717–2724 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Benninger, Y. et al. β1-integrin signaling mediates premyelinating oligodendrocyte survival but is not required for CNS myelination and remyelination. J. Neurosci. 26, 7665–7673 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jaros, E. & Jenkison, M. Quantitative studies of the abnormal axon-Schwann cell relationship in the peripheral motor and sensory nerves of the dystrophic mouse. Brain Res. 258, 181–196 (1983).

    CAS  PubMed  Google Scholar 

  116. Saito, F. et al. Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron 38, 747–758 (2003).

    CAS  PubMed  Google Scholar 

  117. Nodari, A. et al. α6β4 integrin and dystroglycan cooperate to stabilize the myelin sheath. J. Neurosci. 28, 6714–6719 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Feltri, M. L. et al. Conditional disruption of β1 integrin in Schwann cells impedes interactions with axons. J. Cell Biol. 156, 199–209 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Spassky, N. et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J. Neurosci. 22, 5992–6004 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bannerman, P. et al. Peripheral nerve regeneration is delayed in neuropilin 2-deficient mice. J. Neurosci. Res. 86, 3163–3169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Williams, A. et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130, 2554–2565 (2007).

    PubMed  Google Scholar 

  122. Moreau-Fauvarque, C. et al. The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J. Neurosci. 23, 9229–9239 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Taniguchi, Y. et al. Sema4D deficiency results in an increase in the number of oligodendrocytes in healthy and injured mouse brains. J. Neurosci. Res. 87, 2833–2841 (2009).

    CAS  PubMed  Google Scholar 

  124. Giraudon, P. et al. Semaphorin CD100 from activated T lymphocytes induces process extension collapse in oligodendrocytes and death of immature neural cells. J. Immunol. 172, 1246–1255 (2004).

    CAS  PubMed  Google Scholar 

  125. Parrinello, S. et al. NF1 loss disrupts Schwann cell-axonal interactions: a novel role for semaphorin 4F. Genes Dev. 22, 3335–3348 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Manitt, C. et al. Widespread expression of netrin-1 by neurons and oligodendrocytes in the adult mammalian spinal cord. J. Neurosci. 21, 3911–3922 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Rajasekharan, S. et al. Netrin 1 and Dcc regulate oligodendrocyte process branching and membrane extension via Fyn and RhoA. Development 136, 415–426 (2009).

    CAS  PubMed  Google Scholar 

  128. Jarjour, A. A. et al. Maintenance of axo-oligodendroglial paranodal junctions requires DCC and netrin-1. J. Neurosci. 28, 11003–11014 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Nakamoto, T., Kain, K. H. & Ginsberg, M. H. Neurobiology: new connections between integrins and axon guidance. Curr. Biol. 14, R121–R123 (2004).

    CAS  PubMed  Google Scholar 

  130. Knoll, B. et al. Serum response factor controls neuronal circuit assembly in the hippocampus. Nat. Neurosci. 9, 195–204 (2006).

    PubMed  Google Scholar 

  131. Wickramasinghe, S. R. et al. Serum response factor mediates NGF-dependent target innervation by embryonic DRG sensory neurons. Neuron 58, 532–545 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Stritt, C. et al. Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression. Nat. Neurosci. 12, 418–427 (2009).

    CAS  PubMed  Google Scholar 

  133. Monk, K. R. et al. A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325, 1402–1405 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen, Y. et al. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat. Neurosci. 12, 1398–1406 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Lecca, D. et al. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS ONE 3, e3579 (2008).

    PubMed  PubMed Central  Google Scholar 

  136. Shen, S., Li, J. & Casaccia-Bonnefil, P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J. Cell Biol. 169, 577–589 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ye, F. et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin–TCF interaction. Nat. Neurosci. 12, 829–838 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. He, Y. et al. The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 55, 217–230 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Shi, Y., Lee, J. S. & Galvin, K. M. Everything you have ever wanted to know about Yin Yang 1. Biochim. Biophys. Acta 1332, F49–F66 (1997).

    CAS  PubMed  Google Scholar 

  140. Fancy, S. P. et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev. 23, 1571–1585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Feigenson, K., Reid, M., See, J., Crenshaw, E. B. 3rd & Grinspan, J. B. Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol. Cell. Neurosci. 42, 255–265 (2009).

    CAS  PubMed  Google Scholar 

  142. Fu, H. et al. A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J. Neurosci. 29, 11399–11408 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Arnett, H. A. et al. bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306, 2111–2115 (2004).

    CAS  PubMed  Google Scholar 

  144. Xin, M. et al. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J. Neurosci. 25, 1354–1365 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Balabanov, R. & Popko, B. Myelin repair: developmental myelination redux? Nat. Neurosci. 8, 262–264 (2005).

    CAS  PubMed  Google Scholar 

  146. Derfuss, T. et al. Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc. Natl Acad. Sci. USA 106, 8302–8307 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Passage, E. et al. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat. Med. 10, 396–401 (2004).

    CAS  PubMed  Google Scholar 

  148. Kaya, F et al. Ascorbic acid inhibits PMP22 expression by reducing cAMP levels. Neuromuscul. Disord. 17, 248–253 (2007).

    PubMed  Google Scholar 

  149. Sereda, M. W., Meyer zu Hörste, G., Suter, U., Uzma, N. & Nave, K. A. Therapeutic administration of progesterone antagonist in a model of Charcot-Marie-Tooth disease (CMT-1A). Nat. Med. 9, 1533–1537 (2003).

    CAS  PubMed  Google Scholar 

  150. Meyer zu Horste, G. et al. Antiprogesterone therapy uncouples axonal loss from demyelination in a transgenic rat model of CMT1A neuropathy. Ann. Neurol. 61, 61–72 (2007).

    CAS  PubMed  Google Scholar 

  151. Pareyson, D. et al. A multicenter, randomized, double-blind, placebo-controlled trial of long-term ascorbic acid treatment in Charcot-Marie-Tooth disease type 1A (CMT-TRIAAL): the study protocol [EudraCT no.: 2006-000032-27]. Pharmacol. Res. 54, 436–441 (2006).

    CAS  PubMed  Google Scholar 

  152. Shy, M. E. Therapeutic strategies for the inherited neuropathies. Neuromolecular Med. 8, 255–278 (2006).

    CAS  PubMed  Google Scholar 

  153. Burns, J. et al. Ascorbic acid for Charcot-Marie-Tooth disease type 1A in children: a randomised, double-blind, placebo-controlled, safety and efficacy trial. Lancet Neurol. 8, 537–544 (2009).

    CAS  PubMed  Google Scholar 

  154. Nave, K. A., Sereda, M. W. & Ehrenreich, H. Mechanisms of disease: inherited demyelinating neuropathies—from basic to clinical research. Nat. Clin. Pract. Neurol. 3, 453–464 (2007).

    CAS  PubMed  Google Scholar 

  155. Fernandez, M. et al. Thyroid hormone administration enhances remyelination in chronic demyelinating inflammatory disease. Proc. Natl Acad. Sci. USA 101, 16363–16368 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Richardson, W. D., Kessaris, N. & Pringle, N. Oligodendrocyte wars. Nat. Rev. Neurosci. 7, 11–18 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Rorke, L. B. & Riggs, H. E. Myelination of the Brain in the Newborn (J. P. Lippincott Company, Philadelphia, 1969).

    Google Scholar 

  158. Birchmeier, C. ErbB receptors and the development of the nervous system. Exp. Cell Res. 315, 611–618 (2009).

    CAS  PubMed  Google Scholar 

  159. Rosenberg, S. S., Ng, B. K. & Chan, J. R. The quest for remyelination: a new role for neurotrophins and their receptors. Brain Pathol. 16, 288–294 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Xiao, J. et al. BDNF exerts contrasting effects on peripheral myelination of NGF-dependent and BDNF-dependent DRG neurons. J. Neurosci. 29, 4016–4022 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Woolley, A. G. et al. Developmental loss of NT-3 in vivo results in reduced levels of myelin-specific proteins, a reduced extent of myelination and increased apoptosis of Schwann cells. Glia 56, 306–317 (2008).

    PubMed  Google Scholar 

  162. Coman, I., Barbin, G., Charles, P., Zalc, B. & Lubetzki, C. Axonal signals in central nervous system myelination, demyelination and remyelination. J. Neurol. Sci. 233, 67–71 (2005).

    CAS  PubMed  Google Scholar 

  163. Charles, P. et al. Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc. Natl Acad. Sci. USA 97, 7585–7590 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Ishibashi, T. et al. Astrocytes promote myelination in response to electrical impulses. Neuron 49, 823–832 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Stevens, B. & Fields, R. D. Response of Schwann cells to action potentials in development. Science 287, 2267–2271 (2000).

    CAS  PubMed  Google Scholar 

  166. Stevens, B., Ishibashi, T., Chen, J. F. & Fields, R. D. Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells. Neuron Glia Biol. 1, 23–34 (2004).

    PubMed  PubMed Central  Google Scholar 

  167. Feltri, M. L. & Wrabetz, L. Laminins and their receptors in Schwann cells and hereditary neuropathies. J. Peripher. Nerv. Syst. 10, 128–143 (2005).

    CAS  PubMed  Google Scholar 

  168. Genoud, S., Maricic, I., Kumar, V. & Gage, F. H. Targeted expression of IGF-1 in the central nervous system fails to protect mice from experimental autoimmune encephalomyelitis. J. Neuroimmunol. 168, 40–45 (2005).

    CAS  PubMed  Google Scholar 

  169. Schumacher, M., Sitruk-Ware, R. & De Nicola, A. F. Progesterone and progestins: neuroprotection and myelin repair. Curr. Opin. Pharmacol. 8, 740–746 (2008).

    CAS  PubMed  Google Scholar 

  170. Park, S. K., Solomon, D. & Vartanian, T. Growth factor control of CNS myelination. Dev. Neurosci. 23, 327–337 (2001).

    CAS  PubMed  Google Scholar 

  171. Franco, P. G., Silvestroff, L., Soto, E. F. & Pasquini, J. M. Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination. Exp. Neurol. 212, 458–467 (2008).

    CAS  PubMed  Google Scholar 

  172. Denisenko, N. et al. Tumor suppressor schwannomin/merlin is critical for the organization of Schwann cell contacts in peripheral nerves. J. Neurosci. 28, 10472–10481 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Hoke, A. & Keswani, S. C. Neuroprotection in the PNS: erythropoietin and immunophilin ligands. Ann. NY Acad. Sci. 1053, 491–501 (2005).

    CAS  PubMed  Google Scholar 

  174. Werner, H. B. et al. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J. Neurosci. 27, 7717–7730 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Furusho, M., Dupree, J. L., Bryant, M. & Bansal, R. Disruption of fibroblast growth factor receptor signaling in nonmyelinating Schwann cells causes sensory axonal neuropathy and impairment of thermal pain sensitivity. J. Neurosci. 29, 1608–1614 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Verheijen, M. H. et al. SCAP is required for timely and proper myelin membrane synthesis. Proc. Natl Acad. Sci. USA 106, 21383–21388 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Inoue, K. et al. Congenital hypomyelinating neuropathy, central dysmyelination, and Waardenburg-Hirschsprung disease: phenotypes linked by SOX10 mutation. Ann. Neurol. 52, 836–842 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratories of C. Taveggia, M. L. Feltri and L. Wrabetz is supported by grants from Fondazione Italiana Sclerosi Multipla, Italy; Telethon, Italy; Compagnia di San Paolo, Italy; Fondazione Mariani, Italy; the NIH, USA; and the European Union. We apologize to colleagues whose relevant work we were unable to cite because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Wrabetz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taveggia, C., Feltri, M. & Wrabetz, L. Signals to promote myelin formation and repair. Nat Rev Neurol 6, 276–287 (2010). https://doi.org/10.1038/nrneurol.2010.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing