Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic determinants of urolithiasis

Abstract

Urolithiasis affects approximately 10% of individuals in Western societies by the seventh decade of life. The most common form, idiopathic calcium oxalate urolithiasis, results from the interaction of multiple genes and their interplay with dietary and environmental factors. To date, considerable progress has been made in identifying the metabolic risk factors that predispose to this complex trait, among which hypercalciuria predominates. The specific genetic and epigenetic factors involved in urolithiasis have remained less clear, partly owing to the candidate gene and linkage methods that have been available until now, being inherently low in their power of resolution and in assessing modest effects in complex traits. However, together with investigations of rare, Mendelian forms of urolithiasis associated with various metabolic risk factors, these methods have afforded insights into biological pathways that seem to underlie the development of stones in the urinary tract. Monogenic diseases account for a greater proportion of stone formers in children and adolescents than in adults. Early diagnosis of monogenic forms of urolithiasis is of importance owing to associated renal injury and other potentially treatable disease manifestations, but diagnosis is often delayed because of a lack of familiarity with these rare disorders. In this Review, we will discuss advances in the understanding of the genetics underlying polygenic and monogenic forms of urolithiasis.

Key Points

  • Calcium oxalate urolithiasis most often presents as a complex trait, which arises from the interaction of multiple genes and their interplay with dietary and environmental factors

  • The search for genetic factors underlying the most common idiopathic form of urolithiasis has yielded a number of promising candidate genes

  • Urolithiasis is also a manifestation of rare, single-gene disorders, many of which present in childhood or adolescence

  • Early diagnosis of monogenic causes of urolithiasis is necessary to prevent renal injury or other disease manifestations; however, diagnosis is often delayed owing to unfamiliarity with these rare, single-gene disorders

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transporter, channel and receptor proteins of the renal tubule that are implicated in urolithiasis.
Figure 2: Kidney biopsy tissue showing 2,8-DHA crystal nephropathy in a patient with APRT deficiency.
Figure 3: Photomicrograph of 2,8-dihydroxyadenine crystals in the urine of a patient with adenine phosphoribosyltransferase deficiency (magnification ×400).
Figure 4: Kidney biopsy tissue from a patient with primary hyperoxaluria.
Figure 5: Photomicrograph of a cystine crystal in the urine of a patient with cystinuria.

Similar content being viewed by others

References

  1. Clubbe, W. H. Hereditariness of stone. Lancet 99, 204 (1872).

    Article  Google Scholar 

  2. Clubbe, W. H. Family disposition to urinary concretions. Lancet 104, 823 (1874).

    Google Scholar 

  3. Thorleifsson, G. et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat. Genet. 41, 926–930 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Weber, S. et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J. Am. Soc. Nephrol. 12, 1872–1881 (2001).

    CAS  PubMed  Google Scholar 

  5. Konrad, M. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson, C. M., Wilson, D. M., O'Fallon, W. M., Malek, R. S. & Kurland, L. T. Renal stone epidemiology: a 25-year study in Rochester, Minnesota. Kidney Int. 16, 624–631 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Soucie, J. M., Thun, M. J., Coates, R. J., McClellan, W. & Austin, H. Demographic and geographic variability of kidney stones in the United States. Kidney Int. 46, 893–899 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Hiatt, R. A. & Friedman, G. D. The frequency of kidney and urinary tract diseases in a defined population. Kidney Int. 22, 63–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Ljunghall, S. Renal stone disease. Studies of epidemiology and calcium metabolism. Scand. J. Urol. Nephrol. 41, 1–96 (1977).

    Google Scholar 

  10. Sutherland, J. W., Parks, J. H. & Coe, F. L. Recurrence after a single renal stone in a community practice. Miner. Electrolyte Metab. 11, 267–269 (1985).

    CAS  PubMed  Google Scholar 

  11. Marshall, V., White, R. H., De Saintonge, M. C., Tresidder, G. C. & Blandy, J. P. The natural history of renal and ureteric calculi. Br. J. Urol. 47, 117–124 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Stamatelou, K. K., Francis, M. E., Jones, C. A., Nyberg, L. M. & Curhan, G. C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 63, 1817–1823 (2003).

    Article  PubMed  Google Scholar 

  13. Strohmaier, W. L. Course of calcium stone disease without treatment. What can we expect? Eur. Urol. 37, 339–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Gambaro, G., Favaro, S. & D'Angelo, A. Risk for renal failure in nephrolithiasis. Am. J. Kidney Dis. 37, 233–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Worcester, E., Park, J. H., Josephson, M. A., Thisted, R. A. & Coe, F. L. Causes and consequences of kidney loss in patients with nephrolithiasis. Kidney Int. 64, 2204–2213 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Worcester, E. M., Parks, J. H., Evan, A. P. & Coe, F. L. Renal function in patients with nephrolithiasis. J. Urol. 176, 600–603 (2006).

    Article  PubMed  Google Scholar 

  17. Saucier, N. A. et al. Risk factors for CKD in persons with kidney stones: a case-control study in Olmsted County, Minnesota. Am. J. Kidney Dis. 55, 61–68 (2010).

    Article  PubMed  Google Scholar 

  18. Henneman, P. H., Benedict, P. H., Forbes, A. P. & Dudley, H. R. Idiopathic hypercalciuria. N. Engl. J. Med. 259, 802–807 (1958).

    Article  CAS  PubMed  Google Scholar 

  19. Resnick, M., Pridgen, D. B. & Goodman, H. O. Genetic predisposition to formation of calcium oxalate renal calculi. N. Engl. J. Med. 278, 1313–1318 (1968).

    Article  CAS  PubMed  Google Scholar 

  20. Coe, F. L., Parks, J. H. & Moore, E. S. Familial idiopathic hypercalciuria. N. Engl. J. Med. 300, 337–340 (1979).

    Article  CAS  PubMed  Google Scholar 

  21. Curhan, G. C., Willett, W. C., Rimm, E. B. & Stampfer, M. J. Family history and risk of kidney stones. J. Am. Soc. Nephrol. 8, 1568–1573 (1997).

    CAS  PubMed  Google Scholar 

  22. McGeown, M. G. Heredity in renal stone disease. Clin. Sci. 19, 465–471 (1960).

    CAS  PubMed  Google Scholar 

  23. Stechman, M. J., Loh, N. Y. & Thakker, R. V. Genetics of hypercalciuric nephrolithiasis: renal stone disease. Ann. NY Acad. Sci. 1116, 461–484 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Goldfarb, D. S., Fischer, M. E., Keich, Y. & Goldberg, J. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int. 67, 1053–1061 (2005).

    Article  PubMed  Google Scholar 

  25. Hunter, D. J. et al. Genetic contribution to renal function and electrolyte balance: a twin study. Clin. Sci. (Lond.) 103, 259–265 (2002).

    Article  CAS  Google Scholar 

  26. Monga, M., Macias, B., Groppo, E. & Hargens, A. Genetic heritability of urinary stone risk in identical twins. J. Urol. 175, 2125–2128 (2006).

    Article  PubMed  Google Scholar 

  27. Herring, L. C. Observations on the analysis of ten thousand urinary calculi. J. Urol. 88, 545–562 (1962).

    Article  CAS  PubMed  Google Scholar 

  28. Hoopes, R. R. Jr et al. Quantitative trait loci for hypercalciuria in a rat model of kidney stone disease. J. Am. Soc. Nephrol. 14, 1844–1850 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Bushinsky, D. A. Genetic hypercalciuric stone-forming rats. Curr. Opin. Nephrol. Hypertens. 8, 479–488 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Favus, M. J., Karnauskas, A. J., Parks, J. H. & Coe, F. L. Peripheral blood monocyte vitamin D receptor levels are elevated in patients with idiopathic hypercalciuria. J. Clin. Endocrinol. Metab. 89, 4937–4943 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Bai, S. et al. Elevated vitamin D receptor levels in genetic hypercalciuric stone-forming rats are associated with down-regulation of Snail. J. Bone Miner. Res. 25, 830–840 (2010).

    CAS  PubMed  Google Scholar 

  32. Scott, P. et al. Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J. Am. Soc. Nephrol. 10, 1007–1013 (1999).

    CAS  PubMed  Google Scholar 

  33. Relan, V., Khullar, M., Singh, S. K. & Sharma, S. K. Association of vitamin D receptor genotypes with calcium excretion in nephrolithiatic subjects in northern India. Urol. Res. 32, 236–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Heilberg, I. P., Teixeira, S. H., Martini, L. A. & Boim, M. A. Vitamin D receptor gene polymorphism and bone mineral density in hypercalciuric calcium-stone-forming patients. Nephron 90, 51–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Vezzoli, G. et al. R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int. 71, 1155–1162 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Petrucci, M. et al. Evaluation of the calcium-sensing receptor gene in idiopathic hypercalciuria and calcium nephrolithiasis. Kidney Int. 58, 38–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Reed, B. Y., Heller, H. J., Gitomer, W. L. & Pak, C. Y. Mapping a gene defect in absorptive hypercalciuria to chromosome 1q23.3-q24. J. Clin. Endocrinol. Metab. 84, 3907–3913 (1999).

    CAS  PubMed  Google Scholar 

  38. Reed, B. Y. et al. Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J. Clin. Endocrinol. Metab. 87, 1476–1485 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Hoenderop, J. G. et al. Molecular identification of the apical Ca2+ channel 1,25-dihydroxyvitamin D3-responsive epithelia. J. Biol. Chem. 274, 8375–8378 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Müller, D. et al. Epithelial Ca2+ channel (ECAC1) in autosomal dominant idiopathic hypercalciuria. Nephrol. Dial. Transplant. 17, 1614–1620 (2002).

    Article  PubMed  Google Scholar 

  41. Jiang, Y., Ferguson, W. B. & Peng, J. B. WNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4. Am. J. Physiol. Renal Physiol. 292, F545–F554 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Hoenderop, J. G. et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J. Clin. Invest. 112, 1906–1914 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peng, J. B., Brown, E. M. & Hediger, M. A. Structural conservation of the genes encoding CaT1, CaT2, and related cation channels. Genomics 76, 99–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Renkema, K. Y. et al. TRPV5 gene polymorphisms in renal hypercalciuria. Nephrol. Dial. Transplant. 24, 1919–1924 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Ryall, R. L. Macromolecules and urolithiasis: parallels and paradoxes. Nephron Physiol. 98, 37–42 (2004).

    Article  Google Scholar 

  46. Khan, S. R. & Kok, D. J. Modulators of urinary stone formation. Front. Biosci. 9, 1450–1482 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Hess, B. Tamm-Horsfall glycoprotein and calcium nephrolithiasis. Miner. Electrolyte Metab. 20, 393–398 (1994).

    CAS  PubMed  Google Scholar 

  48. Ryall, R. L. Urinary inhibitors of calcium oxalate crystallization and their potential role in stone formation. World J. Urol. 15, 155–164 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Gao, B. et al. Association of osteopontin gene haplotypes with nephrolithiasis. Kidney Int. 72, 592–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Gögebakan, B. et al. Association between the T-593A and C6982T polymorphisms of the osteopontin gene and risk of developing nephrolithiasis. Arch. Med. Res. 41, 442–448 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Liu, C. C. et al. The impact of osteopontin promoter polymorphisms on the risk of calcium urolithiasis. Clin. Chim. Acta 411, 739–743 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Okamoto, N. et al. Associations between renal sodium-citrate cotransporter (hNaDC-1) gene polymorphism and urinary citrate excretion in recurrent renal calcium stone formers and normal controls. Int. J. Urol. 14, 344–349 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Wilcox, E. R. et al. Mutations in gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104, 165–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Jungers, P. et al. Inherited monogenic kidney stone diseases: recent diagnostic and therapeutic advances [French]. Nephrol. Ther. 4, 231–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Milliner, D. S. in Requisite in Pediatrics: Pediatric Nephrology and Urology (eds Kaplan, B. S. & Myers, K.) 361–374 (Mosby, St Louis, 2004).

    Google Scholar 

  56. Wrong, O. M., Norden, A. G. & Feest, T. G. Dent's disease; a familial proximal renal tubular syndrome with low-molecuar-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87, 473–493 (1994).

    CAS  PubMed  Google Scholar 

  57. Lloyd, S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature 379, 445–449 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Hoopes, R. R. Jr et al. Dent disease with mutations in OCRL1. Am. J. Hum. Genet. 76, 260–267 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Lowe, M. Structure and function of the Lowe syndrome protein OCRL1. Traffic 6, 711–719 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Sliman, G. A., Winters, W. D., Shaw, D. W. & Avner, E. D. Hypercalciuria and nephrocalcinosis in the oculocerebrorenal syndrome. J. Urol. 153, 1244–1246 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Utsch, B. et al. Novel OCRL1 mutations in patients with the phenotype of Dent disease. Am. J. Kidney Dis. 48, 942–954 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Tosetto, E. et al. Phenotypic and genetic heterogeneity in Dent's disease—results of an Italian collaborative study. Nephrol. Dial. Transplant. 21, 2452–2463 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Scheinman, S. J. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int. 53, 3–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Scheinman, S. J. et al. Isolated hypercalciuria with mutation in CLCN5: relevance to idiopathic hypercalciuria. Kidney Int. 57, 232–239 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Colegio, O. R., Van Itallie, C. M., McCrea, H. J., Rahner, C. & Anderson, J. M. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am. J. Physiol. Cell Physiol. 283, C142–C147 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Simon, D. B. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Hou, J. et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc. Natl Acad. Sci. USA 106, 15350–15355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Konrad, M. et al. CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J. Am. Soc. Nephrol. 19, 171–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Müller, D. et al. A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J. Hum. Genet. 73, 1293–1301 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bruce, L. J., Unwin, R. J., Wrong, O. & Tanner, M. J. The association between familial distal renal tubular acidosis and mutations in the red cell anion exchanger (band 3, AE1) gene. Biochem. Cell Biol. 76, 723–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Cheidde, L., Vieira, T. C., Lima, P. R., Saad, S. T. & Heilberg, I. P. A novel mutation in the anion exchanger 1 gene is associated with familial distal renal tubular acidosis and nephrocalcinosis. Pediatrics 112, 1361–1367 (2003).

    Article  PubMed  Google Scholar 

  72. Karet, F. E. et al. Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33–34. Am. J. Hum. Genet. 65, 1656–1665 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karet, F. E. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat. Genet. 21, 84–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Smith, A. N. et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat. Genet. 26, 71–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Stover, E. H. et al. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J. Med. Genet. 39, 796–803 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tieder, M. et al. Hereditary hypophosphatemic rickets with hypercalciuria. N. Engl. J. Med. 312, 611–617 (1985).

    Article  CAS  PubMed  Google Scholar 

  77. Bergwitz, C. et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am. J. Hum. Genet. 78, 179–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Lorenz-Depiereux, B. et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am. J. Hum. Genet. 78, 193–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Jaureguiberry, G., Carpenter, T. O., Forman, S., Jüppner, H. & Bergwitz, C. A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc. Am. J. Physiol. Renal Physiol. 295, F371–F379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tencza, A. L. et al. Hypophosphatemic rickets with hypercalciuria due to mutation in SLC34A3/type IIc sodium-phosphate cotransporter: presentation as hypercalciuria and nephrolithiasis. J. Clin. Endocrinol. Metab. 94, 4433–4438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ichikawa, S. et al. Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. J. Clin. Endocrinol. Metab. 91, 4022–4027 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Simmons, H. A., Sahota, A. S. & Van Acker, K. J. in The Metabolic Basis of Inherited Disease 6th edn (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 1029–1044 (McGraw-Hill, New York, 1989).

    Google Scholar 

  83. Edvardsson, V., Palsson, R., Olafsson, I., Hjaltadottir, G. & Laxdal, T. Clinical features and genotype of adenine phosphoribosyltransferase deficiency in Iceland. Am. J. Kidney Dis. 38, 473–480 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Sahota, A. S., Tischfield, J. A., Kamatani, N. & Simmonds, H. A. in The Metabolic and Molecular Bases of Inherited Disease 8th edn (eds Scriver, C. R. et al.) 2571–2584 (McGraw-Hill, New York, 2000).

    Google Scholar 

  85. Kamatani, N. et al. Identification of a compound heterozygote for adenine phosphoribosyltransferase deficiency (APRT*J/APART*Q0) leading to 2,8-dihydroxyadenine urolithiasis. Hum. Genet. 85, 500–504 (1990).

    CAS  PubMed  Google Scholar 

  86. Gathof, B. S. et al. A splice mutation at the adenine phosphoribosyltransferase locus detected in a German family. Adv. Exp. Med. Biol. 309B, 83–86 (1991).

    Article  CAS  PubMed  Google Scholar 

  87. Menardi, C. et al. Human APRT deficiency indication for multiple origins of the most common Caucasian mutation and detection of a novel type of mutation involving intrastrand-templated repair. Hum. Mutat. 10, 251–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Bollée, G. et al. Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J. Am. Soc. Nephrol. 21, 679–688 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Di Pietro, V. et al. Clinical, biochemical and molecular diagnosis of a compound homozygote for the 254 bp deletion-8 bp insertion of the APRT gene suffering from severe renal failure. Clin. Biochem. 40, 73–80 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Johnson, L. A., Gordon, R. B. & Emmerson, B. T. Adenine phosphoribosyltransferase: a simple spectrophotometric assay and the incidence of mutation in the normal population. Biochem. Genet. 15, 265–272 (1977).

    Article  CAS  PubMed  Google Scholar 

  91. Seegmiller, J. E., Rosenbloom, F. M. & Kelley, W. N. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 155, 1682–1684 (1967).

    Article  CAS  PubMed  Google Scholar 

  92. Kelley, W. N., Rosenbloom, F. M., Henderson, J. F. & Seegmiller, J. E. A specific enzyme defect in gout associated with overproduction of uric acid. Proc. Natl Acad. Sci. USA 57, 1735–1739 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Torres, R. J., Prior, C. & Puig, J. G. Efficacy and safety of allopurinol in patients with hypoxanthine-guanine phosphoribosyltransferase deficiency. Metabolism 56, 1179–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Jinnah, H. A., De Gregorio, L., Harris, J. C., Nyhan, W. L. & O'Neill, J. P. The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mutat. Res. 463, 309–326 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Torres, R. J. et al. Molecular basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in thirteen Spanish families. Hum. Mutat. 15, 383 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Torres, R. J. & Puig, J. G. Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J. Rare Dis. 2, 48 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nyhan, W. L., Vuong, L. U. & Broock, R. Prenatal diagnosis of Lesch-Nyhan disease. Prenat. Diagn. 23, 807–809 (2003).

    Article  PubMed  Google Scholar 

  98. Graham, G. W., Aitken, D. A. & Connor, J. M. Prenatal diagnosis by enzyme analysis in 15 pregnancies at risk for the Lesch-Nyhan syndrome. Prenat. Diag. 16, 647–651 (1996).

    Article  CAS  Google Scholar 

  99. Ishida, Y. et al. Partial hypoxanthine-guanine phosphoribosyltransferase deficiency due to a newly recognized mutation presenting with renal failure in a one-year-old boy. Eur. J. Pediatr. 167, 957–959 (2008).

    Article  PubMed  Google Scholar 

  100. Arikyants, N. et al. Xanthinuria type 1: a rare cause of urolithiasis. Pediatr. Nephrol. 22, 310–314 (2007).

    Article  PubMed  Google Scholar 

  101. Cochat, P. et al. Epidemiology of primary hyperoxaluria type 1. Société de Néphrologie and the Société de Néphrologie Pédiatrique. Nephrol. Dial. Transplant. 10 (Suppl. 8), 3–7 (1995).

    Article  PubMed  Google Scholar 

  102. Lieske, J. C. et al. International registry for primary hyperoxaluria. Am. J. Nephrol. 25, 290–296 (2005).

    Article  PubMed  Google Scholar 

  103. Milliner, D. S. The primary hyperoxalurias: an algorithm for diagnosis. Am. J. Nephrol. 25, 154–160 (2005).

    Article  PubMed  Google Scholar 

  104. Danpure, C. J. & Jennings, P. R. Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type 1. FEBS Lett. 26, 20–34 (1986).

    Article  Google Scholar 

  105. Rumsby, G., Williams, E. & Coulter-Mackie, M. Evaluation of mutation screening as a first line test for the diagnosis of primary hyperoxalurias. Kidney Int. 66, 959–963 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Williams, E. & Rumsby, G. Selected exonic sequencing of the AGXT gene provides a genetic diagnosis in 50% of patients with primary hyperoxaluria type 1. Clin. Chem. 53, 1216–1221 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Monico, C. G. et al. Comprehensive mutation screening in 55 probands with type 1 primary hyperoxaluria shows feasibility of a gene-based diagnosis. J. Am. Soc. Nephrol. 18, 1905–1914 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Williams, E. L. et al. Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene. Hum. Mutat. 30, 910–917 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Monico, C. G., Rossetti, S., Olson, J. B. & Milliner, D. S. Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int. 67, 1704–1709 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Monico, C. G., Olson, J. B. & Milliner, D. S. Implications of genotype and enzyme phenotype in pyridoxine response of patients with type I primary hyperoxaluria. Am. J. Nephrol. 25, 183–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Milliner, D. S., Eickholt, J. T., Bergstralh, E. J., Wilson, D. M. & Smith, L. H. Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N. Engl. J. Med. 331, 1553–1558 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Giafi, C. F. & Rumsby, G. Kinetic analysis and tissue distribution of human D-glycerate dehydrogenase/glyoxylate reductase and its relevance to the diagnosis of primary hyperoxaluria type 2. Ann. Clin. Biochem. 35, 104–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Milliner, D. S., Wilson, D. M. & Smith, L. H. Phenotypic expression of primary hyperoxaluria: comparative features of types I and II. Kidney Int. 59, 31–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Williams, H. E. & Smith, L. H. Jr. L-glyceric aciduria—a new genetic variant of primary hyperoxaluria. N. Engl. J. Med. 278, 233–238 (1968).

    Article  CAS  PubMed  Google Scholar 

  115. Webster, K. E., Ferree, P. M., Holmes, R. P. & Cramer, S. D. Identification of missense, nonsense, and deletion mutations in the GRHPR gene in patients with primary hyperoxaluria type II (PH2). Hum. Genet. 107, 176–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Cregeen, D. P., Williams, E. L., Hulton, S. & Rumsby, G. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum. Mutat. 22, 497 (2003).

    Article  PubMed  CAS  Google Scholar 

  117. Monico, C. G., Persson, M., Ford, G. C., Rumsby, G. & Milliner, D. S. Potential mechanisms of marked hyperoxaluria not due to primary hyperoxaluria I or II. Kidney Int. 62, 392–400 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Belostotsky, R. et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am. J. Hum. Genet. 87, 392–399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Monico, C. G. et al. Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin. J. Am. Soc. Nephrol. 6, 2289–2295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Calonge, M. J. et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat. Genet. 6, 420–425 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Purroy, J. et al. Genomic structure and organization of the human rBAT gene (SLC3A1). Genomics 37, 249–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Chesney, R. W. Mutational analysis of patients with cystinuria detected by a genetic screening network: powerful tools in understanding the several forms of the disorder. Kidney Int. 54, 279–280 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Feliubadaló, L. et al. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat. Genet. 23, 52–57 (1999).

    Article  PubMed  Google Scholar 

  124. Bruno, M. & Marangella, M. Cystinuria: recent advances in pathophysiology and genetics. Contrib. Nephrol. 122, 173–177 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Goodyer, P., Boutros, M. & Rozen, R. The molecular basis of cystinuria: an update. Exp. Nephrol. 8, 123–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Dello Strologo, L. et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J. Am. Soc. Nephrol. 13, 2547–2553 (2002).

    Article  PubMed  Google Scholar 

  127. Bisceglia, L. et al. Large rearrangements detected by MLPA, point mutations, and survey of the frequency of mutations within the SLC3A1 and SLC7A9 genes in a cohort of 172 cystinuric Italian patients. Mol. Genet. Metab. 99, 42–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Hoppe, B. & Langman, C. B. A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria. Pediatr. Nephrol. 18, 986–991 (2003).

    Article  PubMed  Google Scholar 

  129. Nasr, S. H. et al. Crystalline nephropathy due to 2,8-dihydroxyadeninuria: an under-recognized cause of irreversible renal failure. Nephrol. Dial. Transplant. 25, 1909–1915 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C. G. Monico researched data to include in the article and wrote the manuscript. Both authors contributed equally to the discussion of content for the article and the reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Dawn S. Milliner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monico, C., Milliner, D. Genetic determinants of urolithiasis. Nat Rev Nephrol 8, 151–162 (2012). https://doi.org/10.1038/nrneph.2011.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing