Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular risk in the peritoneal dialysis patient

Abstract

Cardiovascular death is the most frequent cause of death in patients on peritoneal dialysis. Risk factors for cardiovascular death in these patients include those that affect the general population as well as those related to end-stage renal disease (ESRD) and those that are specific to peritoneal dialysis. The development of overhydration after loss of residual renal function is probably the most important cardiovascular risk factor specific to peritoneal dialysis. The high glucose load associated with peritoneal dialysis may lead to insulin resistance and to the development of an atherogenic lipid profile. The presence of glucose degradation products in conventional dialysis solutions, which leads to the local formation of advanced glycation end products, is also specific to peritoneal dialysis. Other risk factors that are not specific to peritoneal dialysis but are related to ESRD include calcifications and protein-energy wasting. When present together with inflammation and atherosclerosis, protein-energy wasting is associated with a marked increase in the risk of cardiovascular death. Obesity is not associated with increased cardiovascular risk in patients on any form of dialysis. Left ventricular hypertrophy and increased arterial stiffness are the most important risk factors for cardiovascular events in the general population.

Key Points

  • Overhydration, which develops easily in the absence of residual renal function, is probably the most important cardiovascular risk factor in patients on long-term peritoneal dialysis

  • Vascular and valvular calcifications are important cardiovascular risk factors in patients with end-stage renal disease and in those on peritoneal dialysis

  • The presence of malnutrition, inflammation, and atherosclerosis contributes to cardiovascular mortality; the presence of all three factors in patients with end-stage renal disease is associated with an increased risk of cardiovascular mortality

  • Obesity is not associated with an increased risk of cardiovascular death in patients on peritoneal dialysis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levey, A. S. Controlling the epidemic of cardiovascular disease in chronic renal disease. What we know? What do we need to learn? Where do we go from here? Am. J. Kidney Dis. 32, 853–905 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. van Dijk, P. C. et al. Renal replacement therapy in Europe: the results of a collaborative effort by the ERA-EDTA registry and six national regional registries. Nephrol. Dial. Transplant. 16, 1120–1129 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. de Jager, D. et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 302, 1782–1789 (2009).

    CAS  PubMed  Google Scholar 

  4. Locatelli, F., Pozzoni, P., Tentori, F. & del Vecchio, L. Epidemiology of cardiovascular risk in patients with chronic kidney disease. Nephrol. Dial. Transplant. 18 (Suppl. 7), vii2–vii9 (2003).

    PubMed  Google Scholar 

  5. Rao, M. V., Qiu, Y., Wang, C. & Bakris, G. Hypertension and CKD: Kidney early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am. J. Kidney Dis. 51, S30–S37 (2008).

    Article  PubMed  Google Scholar 

  6. National High Blood Pressure Education Program Working Group. 1995 Update of the working group reports on chronic renal failure and renovascular hypertension. Arch. Intern. Med. 156, 1938–1947 (1995).

  7. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 32, S112–S119 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Cocchi, R. et al. Prevalence of hypertension in patients on peritoneal dialysis: results of an Italian multicentre study. Nephrol. Dial. Transplant. 14, 1536–1540 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Günal, A. I. et al. Blood pressure control and left ventricular hypertrophy in long-term CAPD and hemodialysis patients: a cross-sectional study. Perit. Dial. Int. 23, 563–567 (2003).

    PubMed  Google Scholar 

  10. Konings, C. J. et al. Fluid status, blood pressure, and cardiovascular abnormalities in patients on peritoneal dialysis. Perit. Dial. Int. 22, 477–487 (2002).

    PubMed  Google Scholar 

  11. Harper, J., Nicholas, J., Ford, D., Casula, A. & Williams, A. J. UK Renal Registry 11th Annual Report (December 2008): Chapter 11 Blood pressure profile of prevalent patients receiving dialysis in the UK in 2007: national and centre-specific analyses. Nephron Clin. Pract. 111 (Suppl. 1), c227–c245 (2009).

    Article  PubMed  Google Scholar 

  12. Jager, K. J. et al. Mortality and technique failure in patients starting chronic peritoneal dialysis: results of The Netherlands Cooperative Study on the Adequacy of Dialysis. NECOSAD Study Group. Kidney Int. 55, 1476–1485 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Termorshuizen, F. et al. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am. J. Kidney Dis. 41, 1293–1302 (2003).

    Article  PubMed  Google Scholar 

  14. Udayaraj, U. P. et al. Blood pressure and mortality risk on peritoneal dialysis. Am. J. Kidney Dis. 53, 70–78 (2009).

    Article  PubMed  Google Scholar 

  15. Ates, K. et al. Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int. 60, 767–776 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Heerspink, H. J. et al. Effect of lowering blood pressure on cardiovascular events and mortality in patients on dialysis: a systematic review and meta-analysis of randomised controlled trials. Lancet 373, 1009–1015 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Foley, R. N. et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 47, 186–192 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Foley, R. N. et al. Long-term evolution of cardiomyopathy in dialysis patients. Kidney Int. 54, 1720–1725 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Enia, G. et al. Long-term CAPD patients are volume expanded and display more severe left ventricular hypertrophy than haemodialysis patients. Nephrol. Dial. Transplant. 16, 1459–1464 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Stack, A. G. & Saran, R. Clinical correlates and mortality impact of left ventricular hypertrophy among new ESRD patients in the United States. Am. J. Kidney Dis. 40, 1202–1210 (2002).

    Article  PubMed  Google Scholar 

  21. Wang, A. Y. et al. Inflammation, residual kidney function, and cardiac hypertrophy are interrelated and combine adversely to enhance mortality and cardiovascular death risk of peritoneal dialysis patients. J. Am. Soc. Nephrol. 15, 2186–2194 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. London, G. M. et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transplant. 18, 1731–1740 (2003).

    Article  PubMed  Google Scholar 

  23. Townsend, R. et al. M. Aortic PWV in chronic kidney disease: a CRIC ancillary study. Am. J. Hypertens. 23, 282–289 (2009).

    Article  PubMed  Google Scholar 

  24. Guérin, A. P., London, G. M., Marchais, S. J. & Metivier, F. Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol. Dial. Transplant. 15, 1014–1021 (2000).

    Article  PubMed  Google Scholar 

  25. Gao, N. et al. Arterial pulse wave velocity and peritoneal transport characteristics independently predict hospitalization in chinese peritoneal dialysis patients. Perit. Dial. Int. 30, 80–85 (2010).

    Article  PubMed  Google Scholar 

  26. Cheng, L. T. et al. The study of aortic stiffness in different hypertension subtypes in dialysis patients. Hypertens. Res. 31, 593–599 (2008).

    Article  PubMed  Google Scholar 

  27. Hallan, S. et al. Obesity, smoking, and physical inactivity as risk factors for CKD: are men more vulnerable? Am. J. Kidney Dis. 47, 396–405 (2006).

    Article  PubMed  Google Scholar 

  28. Orth, S. R. & Hallan, S. I. Smoking: a risk factor for progression of chronic kidney disease and for cardiovascular morbidity and mortality in renal patients--absence of evidence or evidence of absence? Clin. J. Am. Soc. Nephrol. 3, 226–236 (2008).

    Article  PubMed  Google Scholar 

  29. Kemperman, F. et al. Continuous ambulatory peritoneal dialysis (CAPD) in patients with diabetic nephropathy. Neth. J. Med. 38, 236–245 (1991).

    CAS  PubMed  Google Scholar 

  30. Braatvedt, G. D., Rosie, B., Bagg, W. & Collins, J. Current and former smoking increases mortality in patients on peritoneal dialysis. N. Z. Med. J. 119, U1977 (2006).

    PubMed  Google Scholar 

  31. Sniderman, A. et al. Hyperapobetalipoproteinemia: the major dyslipoproteinemia in patients with chronic renal failure treated with chronic ambulatory peritoneal dialysis. Atherosclerosis 65, 257–264 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Fellstrom, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Kalantar-Zadeh, K. et al. Revisiting mortality predictability of serum albumin in the dialysis population: time dependency, longitudinal changes and population-attributable fraction. Nephrol. Dial. Transplant. 20, 1880–1888 (2005).

    Article  PubMed  Google Scholar 

  35. de Mutsert, R. et al. Association between body mass index and mortality is similar in the hemodialysis population and the general population at high age and equal duration of follow-up. J. Am. Soc. Nephrol. 18, 967–974 (2007).

    Article  PubMed  Google Scholar 

  36. Johnson, D. W. et al. Is obesity a favorable prognostic factor in peritoneal dialysis patients? Perit. Dial. Int. 20, 715–721 (2000).

    CAS  PubMed  Google Scholar 

  37. Snyder, J. J., Foley, R. N., Gilbertson, D. T., Vonesh, E. F. & Collins, A. J. Body size and outcomes on peritoneal dialysis in the United States. Kidney Int. 64, 1838–1844 (2003).

    Article  PubMed  Google Scholar 

  38. Abbott, K. C. et al. Body mass index, dialysis modality, and survival: analysis of the United States Renal Data System Dialysis Morbidity and Mortality Wave II Study. Kidney Int. 65, 597–605 (2004).

    Article  PubMed  Google Scholar 

  39. McDonald, S. P., Collins, J. F. & Johnson, D. W. Obesity is associated with worse peritoneal dialysis outcomes in the Australia and New Zealand patient populations. J. Am. Soc. Nephrol. 14, 2894–2901 (2003).

    Article  PubMed  Google Scholar 

  40. Stack, A. G., Murthy, B. V. & Molony, D. A. Survival differences between peritoneal dialysis and hemodialysis among “large” ESRD patients in the United States. Kidney Int. 65, 2398–2408 (2004).

    Article  PubMed  Google Scholar 

  41. Aslam, N., Bernardini, J., Fried, L. & Piraino, B. Large body mass index does not predict short-term survival in peritoneal dialysis patients. Perit. Dial. Int. 22, 191–196 (2002).

    PubMed  Google Scholar 

  42. de Mutsert, R., Grootendorst, D. C., Boeschoten, E. W., Dekker, F. W. & Krediet, R. T. Is obesity associated with a survival advantage in patients starting peritoneal dialysis? Contrib. Nephrol. 163, 124–131 (2009).

    Article  PubMed  Google Scholar 

  43. Henry, R. M. et al. Mild renal insufficiency is associated with increased cardiovascular mortality: The Hoorn Study. Kidney Int. 62, 1402–1407 (2002).

    Article  PubMed  Google Scholar 

  44. Anavekar, N. S. et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infaction. N. Engl. J. Med. 351, 1285–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Liao, W. S., Ma, K. T., Woodworth, C. D., Mengel, L. & Isom, H. C. Stimulation of the acute-phase response in simian virus 40-hepatocyte cell lines. Mol. Cell. Biol. 9, 2779–2786 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stenvinkel, P. et al. Inflammation and outcome in end-stage renal failure: Does female gender constitute a survival advantage? Kidney Int. 62, 1791–1798 (2002).

    Article  PubMed  Google Scholar 

  47. Yeun, J. Y., Levine, R. A., Mantadilok, V. & Kaysen, G. A. C-Reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am. J. Kidney Dis. 35, 469–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, A. Y. et al. Is a single time point C-reactive protein predictive of outcome in peritoneal dialysis patients? J. Am. Soc. Nephrol. 14, 1871–1879 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Ducloux, D., Bresson-Vautrin, C., Kribs, M., Abdelfatah, A. & Chalopin, J. M. C-reactive protein and cardiovascular disease in peritoneal dialysis patients. Kidney Int. 62, 1417–1422 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Herzig, K. A. et al. Is C-reactive protein a useful predictor of outcome in peritoneal dialysis patients? J. Am. Soc. Nephrol. 12, 814–821 (2001).

    CAS  PubMed  Google Scholar 

  51. Haubitz, M. et al. Chronic induction of C-reactive protein by hemodialysis, but not by peritoneal dialysis therapy. Perit. Dial. Int. 16, 158–162 (1996).

    CAS  PubMed  Google Scholar 

  52. Shlipak, M. G. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 107, 87–92 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Pecoits-Filho, R., Bárány, P., Lindholm, B., Heimbürger, O. & Stenvinkel, P. Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol. Dial. Transplant. 17, 1684–1688 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Stompor, T. et al. Changes in common carotid artery intima-media thickness over 1 year in patients on peritoneal dialysis. Nephrol. Dial. Transplant. 20, 404–412 (2005).

    Article  PubMed  Google Scholar 

  55. van Guldener, C. et al. Endothelium-dependent vasodilatation is impaired in peritoneal dialysis patients. Nephrol. Dial. Transplant. 13, 1782–1786 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. van Guldener, C., Lambert, J., Janssen, M. J., Donker, A. J. & Stehouwer, C. D. Endothelium-dependent vasodilatation and distensibility of large arteries in chronic haemodialysis patients. Nephrol. Dial. Transplant. 12 (Suppl. 2), 14–18 (1997).

    PubMed  Google Scholar 

  57. Tatematsu, S. et al. Role of nitric oxide-producing and -degrading pathways in coronary endothelial dysfunction in chronic kidney disease. J. Am. Soc. Nephrol. 18, 741–749 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Choi, H. Y. et al. Association of inflammation and protein-energy wasting with endothelial dysfunction in peritoneal dialysis patients. Nephrol. Dial. Transplant. 25, 1266–1271 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Kielstein, J. T. & Zoccali, C. Asymmetric dimethylarginine: a cardiovascular risk factor and a uremic toxin coming of age? Am. J. Kidney Dis. 46, 186–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Zoccali, C. et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358, 2113–2117 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Suliman, M. E., Qureshi, A. R., Heimbürger, O., Lindholm, B. & Stenvinkel, P. Soluble adhesion molecules in end-stage renal disease: a predictor of outcome. Nephrol. Dial. Transplant. 21, 1603–1610 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, A. Y. et al. Circulating soluble vascular cell adhesion molecule 1: relationships with residual renal function, cardiac hypertrophy, and outcome of peritoneal dialysis patients. Am. J. Kidney Dis. 45, 715–729 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Papagianni, A. et al. Carotid atherosclerosis is associated with inflammation and endothelial cell adhesion molecules in chronic haemodialysis patients. Nephrol. Dial. Transplant. 18, 113–119 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Stenvinkel, P., Lindholm, B., Heimbürger, M. & Heimbürger, O. Elevated serum levels of soluble adhesion molecules predict death in pre-dialysis patients: association with malnutrition, inflammation, and cardiovascular disease. Nephrol. Dial. Transplant. 15, 1624–1630 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Stenvinkel, P. et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 55, 1899–1911 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. de Mutsert, R. et al. Excess mortality due to interaction between protein-energy wasting, inflammation and cardiovascular disease in chronic dialysis patients. Nephrol. Dial. Transplant. 23, 2957–2964 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Chung, S. H., Lindholm, B. & Lee, H. B. Is malnutrition an independent predictor of mortality in peritoneal dialysis patients? Nephrol. Dial. Transplant. 18, 2134–2140 (2003).

    Article  PubMed  Google Scholar 

  68. Fouque, D. et al. C. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 73, 391–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Stenvinkel, P., Heimbürger, O., Lindholm, B., Kaysen, G. A. & Bergström, J. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (MIA syndrome). Nephrol. Dial. Transplant. 15, 953–960 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. de Mutsert, R. et al. Association between serum albumin and mortality in dialysis patients is partly explained by inflammation, and not by malnutrition. J. Ren. Nutr. 19, 127–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Kalantar-Zadeh, K., Ikizler, T. A., Block, G., Avram, M. M. & Kopple, J. D. Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am. J. Kidney Dis. 42, 864–881 (2003).

    Article  PubMed  Google Scholar 

  72. Friedman, A. N. & Fadem, S. Z. Reassessment of albumin as a nutritional marker in kidney disease. J. Am. Soc. Nephrol. 21, 223–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Cheng, T. H. et al. Serial monitoring of nutritional status in Chinese peritoneal dialysis patients by Subjective Global Assessment and comprehensive Malnutrition Inflammation Score. Nephrology (Carlton) 14, 143–147 (2009).

    Article  Google Scholar 

  74. Ho, L. C., Wang, H. H., Chiang, C. K., Hung, K. Y. & Wu, K. D. Malnutrition-inflammation score independently determined cardiovascular and infection risk in peritoneal dialysis patients. Blood Purif. 29, 308–316 (2010).

    Article  PubMed  Google Scholar 

  75. Oberg, B. P. et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 65, 1009–1016 (2004).

    Article  PubMed  Google Scholar 

  76. Dounousi, E. et al. Oxidative stress is progressively enhanced with advancing stages of CKD. Am. J. Kidney Dis. 48, 752–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Handelman, G. J. et al. Elevated plasma F2-isoprostanes in patients on long-term hemodialysis. Kidney Int. 59, 1960–1966 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Nguyen-Khoa, T. et al. Critical evaluation of plasma and LDL oxidant-trapping potential in hemodialysis patients. Kidney Int. 56, 747–753 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Kocak, H. et al. Advanced oxidative protein products are independently associated with endothelial function in peritoneal dialysis patients. Nephrology (Carlton) 14, 273–280 (2009).

    Article  CAS  Google Scholar 

  80. Tarng, D. C. et al. Increased oxidative damage to peripheral blood leukocyte DNA in chronic peritoneal dialysis patients. J. Am. Soc. Nephrol. 13, 1321–1330 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Ignace, S., Fouque, D., Arkouche, W., Steghens, J. P. & Guebre-Egziabher, F. Preserved residual renal function is associated with lower oxidative stress in peritoneal dialysis patients. Nephrol. Dial. Transplant. 24, 1685–1689 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Furuya, R. et al. Impact of residual renal function on plasma levels of advanced oxidation protein products and pentosidine in peritoneal dialysis patients. Nephron Clin. Pract. 112, c255–c261 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Pawlak, K., Pawlak, D., Brzosko, S. & Mysliwiec, M. Carotid atherosclerosis is associated with enhanced beta-chemokine levels in patients on continuous ambulatory peritoneal dialysis. Atherosclerosis 186, 146–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Stenvinkel, P. et al. Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? Clin. J. Am. Soc. Nephrol. 3, 505–521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stenvinkel, P., Diczfalusy, U., Lindholm, B. & Heimbürger, O. Phospholipid plasmalogen, a surrogate marker of oxidative stress, is associated with increased cardiovascular mortality in patients on renal replacement therapy. Nephrol. Dial. Transplant. 19, 972–976 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Boaz, M. et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356, 1213–1218 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Tepel, M., van der Giet, M., Statz, M., Jankowski, J. & Zidek, W. The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation 107, 992–995 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Aslam, S. Cardiovascular disease in dialysis patients: do some antihypertensive drugs have specific antioxidant effects or is it just blood pressure reduction? Does antioxidant treatment reduce the risk for cardiovascular disease? Curr. Opin. Nephrol. Hypertens. 17, 99–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. London, G. M. Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function. J. Am. Soc. Nephrol. 14, 305–309 (2003).

    Article  Google Scholar 

  90. Ganesh, S. K., Stack, A. G., Levin, N. W., Hulbert-Shearon, T. & Port, F. K. Association of elevated serum PO(4), Ca × PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J. Am. Soc. Nephrol. 12, 2131–2138 (2001).

    CAS  PubMed  Google Scholar 

  91. Block, G. A. et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 15, 2208–2218 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Westenfeld, R. et al. Fetuin-A protects against atherosclerotic calcification in CKD. J. Am. Soc. Nephrol. 20, 1264–1274 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. London, G. M. et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transplant. 18, 1731–1740 (2003).

    Article  PubMed  Google Scholar 

  94. Wang, A. Y. et al. Cardiac valve calcification as an important predictor for all-cause mortality and cardiovascular mortality in long-term peritoneal dialysis patients: a prospective study. J. Am. Soc. Nephrol. 14, 159–168 (2003).

    Article  PubMed  Google Scholar 

  95. Papagianni, A. et al. Carotid atherosclerosis and endothelial cell adhesion molecules as predictors of long-term outcome in chronic hemodialysis patients. Am. J. Nephrol. 28, 265–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Ketteler, M. et al. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 361, 827–833 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, A. Y. et al. Associations of serum fetuin-A with malnutrition, inflammation, atherosclerosis and valvular calcification syndrome and outcome in peritoneal dialysis patients. Nephrol. Dial. Transplant. 20, 1676–1685 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Hermans, M. M. et al. Association of serum fetuin-A levels with mortality in dialysis patients. Kidney Int. 72, 202–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, A. Y. et al. Long-term mortality and cardiovascular risk stratification of peritoneal dialysis patients using a combination of inflammation and calcification markers. Nephrol. Dial. Transplant. 24, 3826–3833 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Zittermann, A. & Koerfer, R. Vitamin D in the prevention and treatment of coronary heart disease. Curr. Opin. Clin. Nutr. Metab. Care 11, 752–757 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Autier, P. & Gandini, S. Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Arch. Intern. Med. 167, 1730–1737 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Ravani, P. et al. Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int. 75, 88–95 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Kovesdy, C. P., Ahmadzadeh, S., Anderson, J. E. & Kalantar-Zadeh, K. Association of activated vitamin D treatment and mortality in chronic kidney disease. Arch. Intern. Med. 168, 397–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Wolf, M. et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int. 72, 1004–1013 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Teng, M. et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J. Am. Soc. Nephrol. 16, 1115–1125 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, A. Y. et al. Serum 25-hydroxyvitamin D status and cardiovascular outcomes in chronic peritoneal dialysis patients: a 3-y prospective cohort study. Am. J. Clin. Nutr. 87, 1631–1638 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Suliman, M. E., Bárán, Y. P., Kalantar-Zadeh, K., Lindholm, B. & Stenvinkel, P. Homocysteine in uraemia--a puzzling and conflicting story. Nephrol. Dial. Transplant. 20, 16–21 (2005).

    Article  PubMed  Google Scholar 

  108. Suliman, M. et al. The reverse epidemiology of plasma total homocysteine as a mortality risk factor is related to the impact of wasting and inflammation. Nephrol. Dial. Transplant. 22, 209–217 (2007).

    Article  PubMed  Google Scholar 

  109. Righetti, M. et al. Effective homocysteine-lowering vitamin B treatment in peritoneal dialysis patients. Perit. Dial. Int. 24, 373–377 (2004).

    CAS  PubMed  Google Scholar 

  110. Baragetti, I. et al. Improvement of endothelial function in uraemic patients on peritoneal dialysis: a possible role for 5-MTHF administration. Nephrol. Dial. Transplant. 22, 3292–3297 (2007).

    Article  PubMed  Google Scholar 

  111. Heinz, J., Kropf, S., Luley, C. & Dierkes, J. Homocysteine as a risk factor for cardiovascular disease in patients treated by dialysis: a meta-analysis. Am. J. Kidney Dis. 54, 478–489 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Heinz, J. et al. B vitamins and the risk of total mortality and cardiovascular disease in end-stage renal disease: results of a randomized controlled trial. Circulation 30, 1432–1438 (2010).

    Article  CAS  Google Scholar 

  113. Fortes, P. C. et al. Insulin resistance and glucose homeostasis in peritoneal dialysis. Perit. Dial. Int. 29 (Suppl. 2), S145–S148 (2009).

    CAS  PubMed  Google Scholar 

  114. Shinohara, K. et al. Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J. Am. Soc. Nephrol. 13, 1894–1900 (2002).

    Article  PubMed  Google Scholar 

  115. Stenvinkel, P. Anaemia and inflammation: what are the implications for the nephrologist? Nephrol. Dial. Transplant. 18 (Suppl. 8), viii17–viii22 (2003).

    PubMed  Google Scholar 

  116. Gunnell, J., Yeun, J.Y., Depner, T. A. & Kaysen, G. A. Acute-phase response predicts erythropoietin resistance in hemodialysis and peritoneal dialysis patients. Am. J. Kidney Dis. 33, 63–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Singh, A. K. Does TREAT give the boot to ESAs in the treatment of CKD anemia? J. Am. Soc. Nephrol. 21, 2–6 (2010).

    Article  PubMed  Google Scholar 

  118. Besarab, A., Goodkin, D. A. & Nissenson, A. R. The normal hematocrit study—follow-up. N. Engl. J. Med. 358, 433–434 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Zager, R. A. Parenteral iron compounds: potent oxidants but mainstays of anemia management in chronic renal disease. Clin. J. Am. Soc. Nephrol. 1 (Suppl. 1), S24–S31 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Boon, D., Bos, W. J., van Montfrans, G. A. & Krediet, R. T. Acute effects of peritoneal dialysis on hemodynamics. Perit. Dial. Int. 21, 166–171 (2001).

    CAS  PubMed  Google Scholar 

  121. Calzavara, P. et al. Intraperitoneal infusion of dialysate: a possible cause of increased plasma atrial natriuretic peptide levels. Nephron 63, 361–362 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Krediet, R. T., Boeschoten, E. W., Zuyderhoudt, F. M. & Arisz, L. The relationship between peritoneal glucose absorption and body fluid loss by ultrafiltration during continuous ambulatory peritoneal dialysis. Clin. Nephrol. 27, 51–55 (1987).

    CAS  PubMed  Google Scholar 

  123. Prinsen, B. A broad-based metabolic approach to study VLDL apoB-100 metabolism in patients with ESRD and patients with ESRD and patients treated with peritoneal dialysis. Kidney Int. 65, 1064–1075 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Yamada, K. et al. Immunohistochemical study of human advanced glycosylation end-products (AGE) in chronic renal failure. Clin. Nephrol. 42, 354–361 (1994).

    CAS  PubMed  Google Scholar 

  125. Nakayama, M. et al. Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int. 51, 182–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Friedlander, M. A., Wu, Y. C., Schulak, J. A., Monnier, V. M. & Hricik, D. E. Influence of dialysis modality on plasma and tissue concentrations of pentosidine in patients with end-stage renal disease. Am. J. Kidney Dis. 25, 445–451 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Ateshkadi, A., Johnson, C. A., Founds, H. W. & Zimmerman, S. W. Serum advanced glycosylation end-products in patients on hemodialysis and CAPD. Perit. Dial. Int. 15, 129–133 (1995).

    CAS  PubMed  Google Scholar 

  128. Mimura, T. et al. Comparison of changes in pulse wave velocity in patients on continuous ambulatory peritoneal dialysis and hemodialysis one year after introduction of dialysis therapy. Adv. Perit Dial. 21, 139–145 (2005).

    PubMed  Google Scholar 

  129. Wieslander, A. P., Nordin, M. K., Kjellstrand, P. T. & Boberg, U. C. Toxicity of peritoneal dialysis fluids on cultured fibroblasts, L-929. Kidney Int. 40, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  130. Miyata, T. et al. Advanced glycation and lipidoxidation of the peritoneal membrane: respective roles of serum and peritoneal fluid reactive carbonyl compounds. Kidney Int. 58, 425–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Zeier, M. et al. Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int. 63, 298–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Schalkwijk, C. G., Ter Wee, P. M. & Teerlink, T. Reduced 1, 2-dicarbonyl compounds in bicarbonate/lactate-buffered peritoneal dialysis (PD) fluids and PD fluids based on glucose polymers or amino acids. Perit. Dial. Int. 20, 796–798 (2000).

    CAS  PubMed  Google Scholar 

  133. Williams, J. D. et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 66, 408–418 (2004).

    Article  PubMed  Google Scholar 

  134. Fan, S. L., Pile, T., Punzalan, S., Raftery, M. J. & Yaqoob, M. M. Randomized controlled study of biocompatible peritoneal dialysis solutions: effect on residual renal function. Kidney Int. 73, 200–206 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Lee, H. Y. et al. Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit. Dial. Int. 25, 248–255 (2005).

    PubMed  Google Scholar 

  136. Han, S. H., Ahn, S. V., Yun, J. Y., Tranaeus, A. & Han, D. S. Mortality and technique failure in peritoneal dialysis patients using advanced peritoneal dialysis solutions. Am. J. Kidney Dis. 54, 711–720 (2009).

    Article  PubMed  Google Scholar 

  137. Hekking, L. H. et al. Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J. Am. Soc. Nephrol. 12, 2775–2786 (2001).

    CAS  PubMed  Google Scholar 

  138. van Westrhenen, R. et al. A pyruvate-buffered dialysis fluid induces less peritoneal angiogenesis and fibrosis than a conventional solution. Perit. Dial. Int. 28, 487–496 (2008).

    CAS  PubMed  Google Scholar 

  139. Perl, J. & Bargman, J. M. The importance of residual kidney function for patients on dialysis: a critical review. Am. J. Kidney Dis. 53, 1068–1081 (2009).

    Article  PubMed  Google Scholar 

  140. Shemin, D., Bostom, A., Laliberty, P. & Dworkin, L. D. Residual renal function and mortality risk in hemodialysis patients. Am. J. Kidney Dis. 38, 85–90 (2010).

    Article  Google Scholar 

  141. Bargman, J. M., Thorpe, K. E. & Churchill, D. N. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J. Am. Soc. Nephrol. 12, 2158–2162 (2001).

    CAS  PubMed  Google Scholar 

  142. Paniagua, R. et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J. Am. Soc. Nephrol. 13, 1307–1320 (2002).

    CAS  PubMed  Google Scholar 

  143. Termorshuizen, F. et al. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am. J. Kidney Dis. 41, 1293–1302 (2003).

    Article  PubMed  Google Scholar 

  144. Liao, C. T. et al. Rate of decline of residual renal function is associated with all-cause mortality and technique failure in patients on long-term peritoneal dialysis. Nephrol. Dial. Transplant. 24, 2909–2914 (2009).

    Article  PubMed  Google Scholar 

  145. Wang, A. Y. et al. A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int. 62, 639–647 (2002).

    Article  PubMed  Google Scholar 

  146. Smit, W. et al. Netherlands Ultrafiltration Failure Study Group. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit. Dial. Int. 24, 562–570 (2004).

    PubMed  Google Scholar 

  147. Mallamaci, F., Tripepi, G., Cutrupi, S., Malatino, L. S. & Zoccali, C. Prognostic value of combined use of biomarkers of inflammation, endothelial dysfunction, and myocardiopathy in patients with ESRD. Kidney Int. 67, 2330–2337 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Rutten, J. H. et al. B-type natriuretic peptide and amino-terminal atrial natriuretic peptide predict survival in peritoneal dialysis. Perit. Dial. Int. 26, 598–602 (2006).

    PubMed  Google Scholar 

  149. Wang, A. Y. et al. N-terminal pro-brain natriuretic peptide: an independent risk predictor of cardiovascular congestion, mortality, and adverse cardiovascular outcomes in chronic peritoneal dialysis patients. J. Am. Soc. Nephrol. 18, 321–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Krediet, R. T. Dry body weight: water and sodium removal targets in PD. Contrib. Nephrol. 150, 104–110 (2006).

    Article  PubMed  Google Scholar 

  151. Brown, E. A. et al. Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J. Am. Soc. Nephrol. 14, 2948–2957 (2003).

    Article  PubMed  Google Scholar 

  152. Jansen, M. A. et al. Predictors of survival in anuric peritoneal dialysis patients. Kidney Int. 68, 1199–1205 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond T. Krediet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krediet, R., Balafa, O. Cardiovascular risk in the peritoneal dialysis patient. Nat Rev Nephrol 6, 451–460 (2010). https://doi.org/10.1038/nrneph.2010.68

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.68

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing