Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal transplantation in patients with HIV

Abstract

HIV infection has been a major global health problem for almost three decades. With the introduction of highly active antiretroviral therapy in 1996, and the advent of effective prophylaxis and management of opportunistic infections, AIDS mortality has decreased markedly. In developed countries, this once fatal infection is now being treated as a chronic condition. As a result, rates of morbidity and mortality from other medical conditions leading to end-stage liver, kidney and heart disease are steadily increasing in individuals with HIV. Presence of HIV infection used to be viewed as a contraindication to transplantation for multiple reasons: concerns for exacerbation of an already immunocompromised state by administration of additional immunosuppressants; the use of a limited supply of donor organs with unknown long-term outcomes; and, the risk of viral transmission to the surgical and medical staff. This Review examines open questions on kidney transplantation in patients infected with HIV-1 and clinical strategies that have resulted in good outcomes. It also describes the clinical concerns associated with the treatment of renal transplant recipients with HIV.

Key Points

  • Renal transplantation is both safe and effective in patients with HIV

  • Rejection rates in patients with HIV are increased, although these rejections respond to therapy

  • Several interactions between highly active antiretroviral therapy drugs and immunosuppressants exist, and they should be taken into careful consideration when devising immunosuppression regimens

  • Management of co-infection with hepatitis C virus and HIV is challenging, as progression rate of liver disease is increased in affected patients

  • Treatment and patient oversight by a team of specialists is critically important to the management of renal transplant recipients with HIV

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pardo, V. et al. Glomerular lesions in the acquired immunodeficiency syndrome. Ann. Intern. Med. 101, 429–434 (1984).

    Article  CAS  Google Scholar 

  2. Rao, T. K. et al. Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. N. Engl. J. Med. 310, 669–673 (1984).

    Article  CAS  Google Scholar 

  3. Ross, M. J. & Klotman, P. E. Recent progress in HIV-associated nephropathy. J. Am. Soc. Nephrol. 13, 2997–3004 (2002).

    Article  Google Scholar 

  4. Selik, R. M., Byers, R. H. Jr, & Dworkin, M. S. Trends in diseases reported on U. S. death certificates that mentioned HIV infection 1987–1999. J. Acquir. Immune Defic. Syndr. 29, 378–387 (2002).

    Article  Google Scholar 

  5. Trullàs, J. C. et al. Prevalence and clinical characteristics of HIV type 1-infected patients receiving dialysis in Spain: results of a Spanish survey in 2006: GESIDA 48/05 study. AIDS Res. Hum. Retroviruses 24, 1229–1235 (2008).

    Article  Google Scholar 

  6. Choi, A. I. et al. Low rates of antiretroviral therapy among HIV-infected patients with chronic kidney disease. Clin. Infect. Dis. 45, 1633–1639 (2007).

    Article  Google Scholar 

  7. Fine, D. M., Perazella, M. A., Lucas, G. M. & Atta, M. G. Renal disease in patients with HIV infection: epidemiology, pathogenesis and management. Drugs 68, 963–980 (2008).

    Article  CAS  Google Scholar 

  8. Shahinian, V. et al. Prevalence of HIV-associated nephropathy in autopsies of HIV-infected patients. Am. J. Kidney Dis. 35, 884–888 (2000).

    Article  CAS  Google Scholar 

  9. Cohen, A. H., Sun, N. C., Shapshak, P. & Imagawa, D. T. Demonstration of human immunodeficiency virus in renal epithelium in HIV-associated nephropathy. Mod. Pathol. 2, 125–128 (1989).

    CAS  PubMed  Google Scholar 

  10. Nochy, D. et al. Renal disease associated with HIV infection: a multicentric study of 60 patients from Paris hospitals. Nephrol. Dial. Transplant. 8, 11–19 (1993).

    Article  CAS  Google Scholar 

  11. Monahan, M., Tanji, N. & Klotman, P. E. HIV-associated nephropathy: an urban epidemic. Semin. Nephrol. 21, 394–402 (2001).

    Article  CAS  Google Scholar 

  12. Ahuja, T. S. et al. Is the prevalence of HIV-associated nephropathy decreasing? Am. J. Nephrol. 19, 655–659 (1999).

    Article  CAS  Google Scholar 

  13. Winston, J. A. et al. Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. N. Engl. J. Med. 344, 1979–1984 (2001).

    Article  CAS  Google Scholar 

  14. Abbott, K. C., Trespalacios, F. C., Agodoa, L. Y. & Ahuja, T. S. HIVAN and medication use in chronic dialysis patients in the United States: analysis of the USRDS DMMS Wave 2 study. BMC Nephrol. 4, 5 (2003).

    Article  Google Scholar 

  15. Rho, M. & Perazella, M. A. Nephrotoxicity associated with antiretroviral therapy in HIV-infected patients. Curr. Drug Saf. 2, 147–154 (2007).

    Article  CAS  Google Scholar 

  16. Fichtenbaum, C. J. Metabolic abnormalities associated with HIV infection and antiretroviral therapy. Curr. Infect. Dis. Rep. 11, 84–92 (2009).

    Article  Google Scholar 

  17. Tourret, J. et al. Outcome and prognosis factors in HIV-infected hemodialysis patients. Clin. J. Am. Soc. Nephrol. 6, 1241–1247 (2006).

    Article  Google Scholar 

  18. Atta, M. G. et al. Survival during renal replacement therapy among African Americans infected with HIV type 1 in urban Baltimore, Maryland. Clin. Infect. Dis. 45, 1625–1632 (2007).

    Article  Google Scholar 

  19. Nolan, C. R. Strategies for improving long-term survival in patients with ESRD. J. Am. Soc. Nephrol. 16 (Suppl. 2), S120–S127 (2005).

    Article  Google Scholar 

  20. Stock, P. G. et al. Kidney and liver transplantation in human immunodeficiency virus-infected patients: a pilot safety and efficacy study. Transplantation 76, 370–375 (2003).

    Article  Google Scholar 

  21. Carter, J. T., Melcher, M. L., Carlson, L. L., Roland, M. E. & Stock, P. G. Thymoglobulin-associated CD4+ T-cell depletion and infection risk in HIV-infected renal transplant recipients. Am. J. Transplant. 6, 753–760 (2006).

    Article  CAS  Google Scholar 

  22. Pelletier, S. J. et al. Review of transplantation in HIV patients during the HAART era. Clin. Transpl. 63–82 (2004).

  23. Abbott, K. C., Swanson, S. J., Agodoa, L. Y. & Kimmel, P. L. Human immunodeficiency virus infection and kidney transplantation in the era of highly active antiretroviral therapy and modern immunosuppression. J. Am. Soc. Nephrol. 15, 1633–1639 (2004).

    Article  Google Scholar 

  24. Roland, M. E. & Stock, P. G. Review of solid-organ transplantation in HIV-infected patients. Transplantation 75, 425–429 (2003).

    Article  Google Scholar 

  25. Roland, M. E. et al. HIV-infected liver and kidney transplant recipients: 1- and 3-year outcomes. Am. J. Transplant. 8, 355–365 (2008).

    Article  CAS  Google Scholar 

  26. Tan, H. P. et al. Living-related donor renal transplantation in HIV+ recipients using alemtuzumab preconditioning and steroid-free tacrolimus monotherapy: a single center preliminary experience. Transplantation 78, 1683–1688 (2004).

    Article  CAS  Google Scholar 

  27. Kumar, M. S. et al. Safety and success of kidney transplantation and concomitant immunosuppression in HIV-positive patients. Kidney Int. 67, 1622–1629 (2005).

    Article  Google Scholar 

  28. Trullas, J. C. et al. Effect of thymoglobulin induction on HIV-infected renal transplant recipients: differences between HIV-positive and HIV-negative patients. AIDS Res. Hum. Retroviruses 23, 1161–1165 (2007).

    Article  CAS  Google Scholar 

  29. Gruber, S. A. et al. Preliminary experience with renal transplantation in HIV+ recipients: low acute rejection and infection rates. Transplantation 86, 269–274 (2008).

    Article  Google Scholar 

  30. Samuel, D., Weber, R., Stock, P., Duclos-Vallee, J. C. & Terrault, N. Are HIV-infected patients candidates for liver transplantation? J. Hepatol. 48, 697–707 (2008).

    Article  Google Scholar 

  31. Carlson, L. Clinical management of the HIV-positive kidney transplant recipient. Nephrol. Nurs. J. 35, 559–567 (2008).

    PubMed  Google Scholar 

  32. Bhagani, S., Sweny, P., Brook, G. & British HIV Association. Guidelines for kidney transplantation in patients with HIV disease. HIV Med. 7, 133–139 (2006).

    Article  CAS  Google Scholar 

  33. Rouet, F. et al. CD4 percentages and total lymphocyte counts as early surrogate markers for pediatric HIV-1 infection in resource-limited settings. J. Trop. Pediatr. 52, 346–354 (2006).

    Article  Google Scholar 

  34. Transplant Study For People with HIV [online], (2009).

  35. O'Gorman, M. R. & Zijenah, L. S. CD4 T cell measurements in the management of antiretroviral therapy--A review with an emphasis on pediatric HIV-infected patients. Cytometry B. Clin. Cytom. 74 (Suppl. 1), S19–S26 (2008).

    Article  Google Scholar 

  36. Sehgal, S. N. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant. Proc. 35 (Suppl. 3), S7–S14 (2003).

    Article  Google Scholar 

  37. Roy, J., Paquette, J. S., Fortin, J. F. & Tremblay, M. J. The immunosuppressant rapamycin represses human immunodeficiency virus type 1 replication. Antimicrob. Agents Chemother. 46, 3447–3455 (2002).

    Article  CAS  Google Scholar 

  38. Heredia, A. et al. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV β-chemokines: an approach to suppress R5 strains of HIV-1. Proc. Natl Acad. Sci. USA 100, 10411–10416 (2003).

    Article  CAS  Google Scholar 

  39. Lesens, O., Deschênes, M., Steben, M., Bélanger, G. & Tsoukas, C. M. Hepatitis C virus is related to progressive liver disease in human immunodeficiency virus-positive hemophiliacs and should be treated as an opportunistic infection. J. Infect. Dis. 179, 1254–1258 (1999).

    Article  CAS  Google Scholar 

  40. Jain, M., Chakravarti, A., Verma, V. & Bhalla, P. Seroprevalence of hepatitis viruses in patients infected with the human immunodeficiency virus. Indian J. Pathol. Microbiol. 52, 17–19 (2009).

    Article  Google Scholar 

  41. Ragni, M. V., Nalesnik, M. A., Schillo, R. & Dang, Q. Highly active antiretroviral therapy improves ESLD-free survival in HIV-HCV co-infection. Haemophilia 15, 552–528 (2009).

    Article  CAS  Google Scholar 

  42. Luan, F. L. et al. Impact of immunosuppressive regimen on survival of kidney transplant recipients with hepatitis C. Transplantation 85, 1601–1606 (2008).

    Article  CAS  Google Scholar 

  43. Locke, J. E., Montgomery, R. A., Warren, D. S., Subramanian, A. & Segev, D. L. Renal transplant in HIV-positive patients: long-term outcomes and risk factors for graft loss. Arch. Surg. 144, 83–86 (2009).

    Article  Google Scholar 

  44. Margolis, D. et al. Abacavir and mycophenolic acid, an inhibitor of inosine monophosphate dehydrogenase, have profound and synergistic anti-HIV activity. J. Acquir. Immune Defic. Syndr. 21, 362–370 (1999).

    Article  CAS  Google Scholar 

  45. Kaur, R. et al. A placebo-controlled pilot study of intensification of antiretroviral therapy with mycophenolate mofetil. AIDS Res. Ther. 3, 16–21 (2006).

  46. Oestreich, K. J., Yoon, H., Ahmed, R. & Boss, J. M. NFATc1 regulates PD-1 expression upon T cell activation. J. Immunol. 181, 4832–4839 (2008).

    Article  CAS  Google Scholar 

  47. Fruman, D. A., Klee, C. B., Bierer, B. E. & Burakoff, S. J. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. Proc. Natl Acad. Sci. USA 89, 3686–3690 (1992).

    Article  CAS  Google Scholar 

  48. Argyropoulos, C. & Mouzaki, A. Immunosuppressive drugs in HIV disease. Curr. Top. Med. Chem. 6, 1769–1789 (2006).

    Article  CAS  Google Scholar 

  49. Stock, P. G. & Roland, M. E. Evolving clinical strategies for transplantation in the HIV-positive recipient. Transplantation 84, 563–571 (2007).

    Article  Google Scholar 

  50. Wacher, V. J., Wu, C. Y. & Benet, L. Z. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol. Carcinog. 13, 129–134 (1995).

    Article  CAS  Google Scholar 

  51. Benet, L. Z., Cummins, C. L. & Wu, C. Y. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int. J. Pharm. 277, 3–9 (2004).

    Article  CAS  Google Scholar 

  52. Frassetto, L. A. et al. Immunosuppressant pharmacokinetics and dosing modifications in HIV-1 infected liver and kidney transplant recipients. Am. J. Transplant. 7, 2816–2820 (2007).

    Article  CAS  Google Scholar 

  53. Jain, A. B. et al. Effect of coadministered lopinavir and ritonavir (Kaletra) on tacrolimus blood concentration in liver transplantation patients. Liver Transpl. 9, 954–960 (2003).

    Article  Google Scholar 

  54. Jain, A. K. et al. The interaction between antiretroviral agents and tacrolimus in liver and kidney transplant patients. Liver Transpl. 8, 841–845 (2002).

    Article  Google Scholar 

  55. Vogel, M. et al. Management of drug-to-drug interactions between cyclosporine A and the protease-inhibitor lopinavir/ritonavir in liver-transplanted HIV-infected patients. Liver Transpl. 10, 939–944 (2004).

    Article  Google Scholar 

  56. Guaraldi, G. et al. Pharmacokinetic interaction between Amprenavir/Ritonavir and FosAmprenavir on cyclosporine in two patients with human immunodeficiency virus infection undergoing orthotopic liver transplantation. Transplant. Proc. 38, 1138–1140 (2006).

    Article  CAS  Google Scholar 

  57. Niwa, T., Murayama, N., Emoto, C. & Yamazaki, H. Comparison of kinetic parameters for drug oxidation rates and substrate inhibition potential mediated by cytochrome P450 3A4 and 3A5. Curr. Drug Metab. 9, 20–33 (2008).

    Article  CAS  Google Scholar 

  58. Guiard-Schmid, J. B., Poirier, J. M., Bonnard, P. & Meynard, J. L. Lack of interaction between atazanavir and proton pump inhibitors in HIV-infected patients treated with ritonavir-boosted atazanavir. J. Acquir. Immune Defic. Syndr. 41, 393–394 (2006).

    Article  Google Scholar 

  59. Kiser, J. J., Lichtenstein, K. A., Anderson, P. L. & Fletcher, C. V. Effects of esomeprazole on the pharmacokinetics of atazanavir and fosamprenavir in a patient with human immunodeficiency virus infection. Pharmacotherapy 26, 511–514 (2006).

    Article  CAS  Google Scholar 

  60. Fulco, P. P., Vora, U. B. & Bearman, G. M. Acid suppressive therapy and the effects on protease inhibitors. Ann. Pharmacother. 40, 1974–1983 (2006).

    Article  CAS  Google Scholar 

  61. Rashid, A. et al. The impact of hepatitis C infection and antiviral therapy on clinical outcome in renal transplantation recipients. Saudi J. Kidney Dis. Transpl. 10, 31–35 (1999).

    CAS  PubMed  Google Scholar 

  62. Miró, J. M. et al. GESIDA/GESITRA-SEIMC, PNS and ONT consensus document on solid organ transplant (SOT) in HIV-infected patients in Spain (March, 2005) [Spanish]. Enferm. Infecc. Microbiol. Clin. 23, 353–362 (2005).

    Article  Google Scholar 

  63. Kovesdy, C. P. & Kalantar-Zadeh, K. Bone and mineral disorders in pre-dialysis CKD. Int. Urol. Nephrol. 40, 427–440 (2008).

    Article  Google Scholar 

  64. Mitterbauer, C. & Oberbauer, R. Bone disease after kidney transplantation. Transpl. Int. 21, 615–624 (2008).

    Article  Google Scholar 

  65. Dolan, S. E., Carpenter, S. & Grinspoon, S. Effects of weight, body composition, and testosterone on bone mineral density in HIV-infected women. J. Acquir. Immune. Defic. Syndr. 45, 161–167 (2007).

    Article  CAS  Google Scholar 

  66. Kalyani, R. R., Gavini, S. & Dobs, A. S. Male hypogonadism in systemic disease. Endocrinol. Metab. Clin. North Am. 36, 333–348 (2007).

    Article  CAS  Google Scholar 

  67. Jacobson, D. L., Spiegelman, D., Knox, T. K. & Wilson, I. B. Evolution and predictors of change in total bone mineral density over time in HIV-infected men and women in the nutrition for healthy living study. J. Acquir. Immune Defic. Syndr. 49, 298–308 (2008).

    Article  CAS  Google Scholar 

  68. Pollet, C., Paul, S. M. & Morgan, R. Immunizations in the HIV-infected patient. N. J. Med. 99, 23–31 (2002).

    PubMed  Google Scholar 

  69. Twardowski, Z. J. Sodium, hypertension, and an explanation of the “lag phenomenon” in hemodialysis patients. Hemodial. Int. 12, 412–425 (2008).

    Article  Google Scholar 

  70. Flint, O. P. et al. The role of protease inhibitors in the pathogenesis of HIV-associated lipodystrophy: cellular mechanisms and clinical implications. Toxicol. Pathol. 37, 65–77 (2009).

    Article  CAS  Google Scholar 

  71. Bobadilla, N. A. & Gamba, G. New insights into the pathophysiology of cyclosporine nephrotoxicity: a role of aldosterone. Am. J. Physiol. Renal. Physiol. 293, F2–F9 (2007).

    Article  CAS  Google Scholar 

  72. Reynolds, L. R. & Tannock, L. R. Management of new-onset diabetes mellitus after transplantation. Postgrad. Med. 120, 60–66 (2008).

    Article  Google Scholar 

  73. Corsini, A. The safety of HMG-CoA reductase inhibitors in special populations at high cardiovascular risk. Cardiovasc. Drugs Ther. 17, 265–285 (2003).

    Article  CAS  Google Scholar 

  74. Goedert, J. J. et al. Spectrum of AIDS-associated malignant disorders. Lancet 351, 1833–1839 (1998).

    Article  CAS  Google Scholar 

  75. Serraino, D., Piselli, P. & Immunosuppression and Cancer Study Group. Cancer cohort consortium approach: cancer epidemiology in immunosuppressed groups. Methods Mol. Biol. 471, 409–419 (2009).

    Article  Google Scholar 

  76. Engels, E. A. et al. Cancer risk in people infected with human immunodeficiency virus in the United States. Int. J. Cancer 123, 187–194 (2008).

    Article  CAS  Google Scholar 

  77. MacDonald, D. C., Nelson, M., Bower, M. & Powles, T. Hepatocellular carcinoma, human immunodeficiency virus and viral hepatitis in the HAART era. World J. Gastroenterol. 14, 1657–1663 (2008).

    Article  Google Scholar 

  78. Chin-Hong, P. V. & Palefsky, J. M. Human papillomavirus anogenital disease in HIV-infected individuals. Dermatol. Ther. 18, 67–76 (2005).

    Article  Google Scholar 

  79. Mazuecos, A. et al. Renal transplantation in HIV-infected patients in Spain [Spanish]. Nefrologia 26, 113–120 (2006).

    CAS  PubMed  Google Scholar 

  80. Roland, M. E., Carlson, L. L., Frassetto, L. A. & Stock, P. G. Solid organ transplantation: referral, management, and outcomes in HIV-infected patients. AIDS Read. 16, 664–668, 675–678 (2006).

    PubMed  Google Scholar 

  81. USPHS/IDSA Prevention of Opportunistic Infections Working Group. 1999 USPHS/IDSA guidelines for the prevention of opportunistic infections in person infected with Human Immunodeficiency Virus. MMWR 48, 10 (1999).

Download references

Acknowledgements

Drs. Frassetto and Stock receive support from NIH NIAID grant AI052748, “Solid Organ Transplantation in HIV”.

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynda A. Frassetto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frassetto, L., Tan-Tam, C. & Stock, P. Renal transplantation in patients with HIV. Nat Rev Nephrol 5, 582–589 (2009). https://doi.org/10.1038/nrneph.2009.140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing