Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The floating blueprint of hypothalamic feeding circuits

Abstract

Early lesion studies and subsequent genetic findings identified the hypothalamus as an important regulator of appetite, food intake and energy expenditure. Over the past 10 years, increasing attention has been dedicated to delineating the hypothalamic blueprint of metabolism regulation, in the hope of developing successful strategies to combat metabolic disorders. However, recent developments indicate that the hypothalamic wiring of feeding circuits changes continuously in the face of varying metabolic parameters. These unexpected findings indicate that new therapeutic avenues might emerge from a complete understanding of synaptic plasticity in the hypothalamus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothalamic peptidergic systems involved in regulating energy balance and food intake.
Figure 2: Schematic illustration of the unmasked synaptic plasticity of components of the melanocortin system.

Similar content being viewed by others

References

  1. Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Elmquist, J. K., Elias, C. F. & Saper, C. B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22, 221–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Kalra, S. P. et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 20, 68–100 (1999).

    CAS  PubMed  Google Scholar 

  4. Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Seeley, R. J. & Woods, S. C. Monitoring of stored and available fuel by the CNS: implications for obesity. Nature Rev. Neurosci. 4, 901–909 (2003).

    Article  CAS  Google Scholar 

  6. Horvath, T. L., Diano, S. & Tschop, M. Brain circuits regulating energy homeostasis. Neuroscientist 10, 235–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hetherington, A. W. The relation of various hypothalamic lesions to adiposity and other phenomena in the rat. Am. J. Physiol. 133, 326 (1941).

    Google Scholar 

  8. Hetherington, A. W. & Ranson, S. W. The relation of various hypothalamic lesions to adiposity in the rat. J. Comp. Neurol. 76, 475 (1942).

    Article  Google Scholar 

  9. Hetherington, A. W. Non-production of hypothalamic obesity in the rat by lesions rostral or dorsal to the ventromedial hypothalamic nuclei. J. Comp. Neurol. 80, 33 (1944).

    Article  Google Scholar 

  10. Brobeck, J. R., Tepperman, J. & Long, C. N. H. Experimental hypothalamic hyperphagia in the albino rat. Yale J. Biol. Med. 15, 831 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brobeck, J. R. Mechanism of the development of obesity in animals with hypothalamic lesions. Physiol. Rev. 26, 541–559 (1946).

    Article  CAS  PubMed  Google Scholar 

  12. Anand, B. K. & Brobeck, J. R. Hypothalamic control of food intake in rats and cats. Yale J. Biol. Med. 24, 123–146 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Coleman, D. L. Diabetes-obesity syndromes in mice. Diabetes 31, 1–6 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Zucker, L. M. & Zucker, T. F. Fatty, a new mutation in the rat. J. Hered. 52, 275–278 (1961).

    Article  Google Scholar 

  15. Sherrington, C. S. in Textbook of Physiology (ed. Sharpey-Schaefer, E. A.) 920–1001 (Edinburgh, Pentland, 1900).

    Google Scholar 

  16. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Halaas, J. L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Pelleymounter, M. A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R. & Burn, P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Leibel, R. L., Chung, W. K. & Chua, S. C. Jr The molecular genetics of rodent single gene obesities. J. Biol. Chem. 272, 31937–31940 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Clement, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 398–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Mercer, J. G. et al. Localization of leptin receptor mRNA and the long splice variant (O-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 387, 113–116 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P. & Baskin, D. G. Identification of leptin action in rat hypothalamus. J. Clin. Invest. 98, 1101–1106 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mayer, J. Regulation of energy intake and body weight: the glucostatic theory and the lipostatic hypothesis. Ann. NY Acad. Sci. 63, 15 (1955).

    Article  CAS  PubMed  Google Scholar 

  26. Bernstein, L. M. & Grossman, M. I. An experimental test of the glucostatic theory of regulation of food intake. J. Clin. Invest. 35, 627–633 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andik, I. & Donhoffer, S. The effect of insulin on food intake and selection of mice. Z. Vitam. Horm. Fermentforsch. 3, 208–212 (1949–1950).

    PubMed  Google Scholar 

  28. Sipols, A. J., Baskin, D. G. & Schwartz, M. W. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44, 147–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Smith, G. P. & Gibbs, J. Cholecystokinin: a putative satiety signal. Pharmacol. Biochem. Behav. 3, 135–138 (1975).

    CAS  PubMed  Google Scholar 

  30. Sturdevant, R. A. & Goetz, H. Cholecystokinin both stimulates and inhibits human food intake. Nature 261, 713–715 (1976).

    Article  CAS  PubMed  Google Scholar 

  31. Turton, M. D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Clark, J. T., Kalra, P. S., Crowley, W. R. & Kalra, S. P. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115, 427–429 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Batterham, R. L. et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418, 650–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Strominger, J. L. & Brobeck, J. R. A mechanism of regulation of food intake. Yale J. Biol. Med. 25, 383–390 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cannon, W. B. & Washburn, A. L. An explanation of hunger. Am. J. Physiol. 29, 441 (1912).

    Article  Google Scholar 

  37. Carlson, A. J. The Control of Hunger in Health and Disease (Chicago Univ. Press, Chicago, 1916).

    Google Scholar 

  38. Guy-Grand, B. Clinical studies with dexfenfluramine: from past to future. Obes. Res. 3 (suppl.), 491S–496S (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Heisler, L. K. et al. Activation of central melanocortin pathways by fenfluramine. Science 297, 609–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Cota, D. et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112, 423–431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wellman, P. J. & Maher, T. J. Synergistic interactions between fenfluramine and phentermine. Int. J. Obes. Relat. Metab. Disord. 23, 723–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Fernandez, J. R. & Allison, D. B. Rimonabant Sanofi-Synthelabo. Curr. Opin. Investig. Drugs. 5, 430–435 (2004).

    CAS  PubMed  Google Scholar 

  44. Grandison, L. & Guidotti, A. Stimulation of food intake by muscimol and beta endorphin. Neuropharmacology 16, 533–536 (1977).

    Article  CAS  PubMed  Google Scholar 

  45. Bunyan, J., Murrell, E. A. & Shah, P. P. The induction of obesity in rodents by means of monosodium glutamate. Br. J. Nutr. 35, 25–39 (1976).

    Article  CAS  PubMed  Google Scholar 

  46. Levine, A. S. & Morley, J. E. Neuropeptide Y: a potent inducer of consummatory behavior in rats. Peptides 5, 1025–1029 (1984).

    Article  CAS  PubMed  Google Scholar 

  47. Stanley, B. G. & Leibowitz, S. F. Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci. 35, 2635–2642 (1984).

    Article  CAS  PubMed  Google Scholar 

  48. Kyrkouli, S. E., Stanley, B. G., Seirafi, R. D. & Leibowitz, S. F. Stimulation of feeding by galanin: anatomical localization and behavioral specificity of this peptide's effects in the brain. Peptides 11, 995–1001 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Blundell, J. E. & Latham, C. J. Serotonergic influences on food intake: effect of 5-hydroxytryptophan on parameters of feeding behaviour in deprived and free-feeding rats. Pharmacol. Biochem. Behav. 11, 431–437 (1979).

    Article  CAS  PubMed  Google Scholar 

  50. Sommer, S. R., Novin, D. & LeVine, M. Food and water intake after intrahypothalamic injections of carbachol in the rabbit. Science 156, 983–984 (1967).

    Article  CAS  PubMed  Google Scholar 

  51. Qu, D. et al. A role for melanin-concentrating hormone in the central regulation of feeding behavior. Nature 380, 243–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Mercer, J. G. et al. Coexpression of leptin receptor and neproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J. Neuroendocrinol. 8, 733–735 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Erickson, J. C., Hollopeter, G. & Palmiter, R. D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274, 1704–1707 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Hahn, T. M., Breininger, J. F., Baskin, D. G. & Schwartz, M. W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neurosci. 1, 271–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Seeley, R. J. et al. Melanocortin receptors in leptin effects. Nature 390, 349 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Zigman, J. M. & Elmquist, J. K. From anorexia to obesity — the yin and yang of body weight control. Endocrinology 144, 3749–3756 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Ollmann, M. M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. van den Pol, A. N. Weighing the role of hypothalamic feeding neurotransmitters. Neuron 40, 1059–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Theodosis, D. T. & Poulain, D. A. Evidence for structural plasticity in the supraoptic nucleus of the rat hypothalamus in relation to gestation and lactation. Neuroscience 11, 183–193 (1984).

    Article  CAS  PubMed  Google Scholar 

  63. Theodosis, D. T., Montagnese, C., Rodriguez, F., Vincent, J. D. & Poulain, D. A. Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature 322, 738–740 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Langle, S. L., Poulain, D. A. & Theodosis, D. T. Induction of rapid, activity-dependent neuronal-glial remodelling in the adult rat hypothalamus in vitro. Eur. J. Neurosci. 18, 206–214 (2003).

    Article  PubMed  Google Scholar 

  65. Garcia-Segura, L. M., Baetens, D. & Naftolin, F. Synaptic remodelling in arcuate nucleus after injection of estradiol valerate in adult female rats. Brain Res. 366, 131–136 (1986).

    Article  CAS  PubMed  Google Scholar 

  66. Matsumoto, A. & Arai, Y. Neuronal plasticity in the deafferented hypothalamic arcuate nucleus of adult female rats and its enhancement by treatment with estrogen. J. Comp. Neurol. 197, 197–205 (1981).

    Article  CAS  PubMed  Google Scholar 

  67. Matsumoto, A. & Arai, Y. Synaptogenic effect of estrogen on the hypothalamic arcuate nucleus of the adult female rat. Cell Tissue Res. 198, 427–433 (1979).

    Article  CAS  PubMed  Google Scholar 

  68. Garcia-Segura, L. M., Olmos, G., Tranque, P. & Naftolin, F. Rapid effects of gonadal steroids upon hypothalamic neuronal membrane ultrastructure. J. Steroid Biochem. 27, 615–623 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Naftolin, F. et al. Synaptic remodeling in the arcuate nucleus during the estrous cycle is induced by estrogen and precedes the preovulatory gonadotropin surge. Endocrinology 137, 5576–5580 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Horvath, T. L., Garcia-Segura, L. M. & Naftolin, F. Control of gonadotropin feedback: the possible role of estrogen-induced hypothalamic synaptic plasticity. Gynecol. Endocrinol. 11, 139–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Horvath, T. L., Naftolin, F., Kalra, S. P. & Leranth, C. Neuropeptide-Y innervation of beta-endorphin-containing cells in the rat mediobasal hypothalamus: a light and electron microscopic double immunostaining analysis. Endocrinology 131, 2461–2467 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Diano, S., Kalra, S. P., Sakamoto, H. & Horvath, T. L. Leptin receptors in estrogen receptor-containing neurons of the female rat hypothalamus. Brain Res. 812, 256–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Pinto, S. et al. Rapid re-wiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Eccles, J. in The Physiology of Synapses (Springer, Berlin, 1964).

    Book  Google Scholar 

  76. Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Bouret, S. G. & Simerly, R. B. Minireview: Leptin and development of hypothalamic feeding circuits. Endocrinology 145, 2621–2626 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Horvath, T. L., Diano, S. & van den Pol, A. N. Synaptic interaction between hypocretin (orexin) and NPY cells in the rodent and primate hypothalamus — a novel hypothalamic circuit implicated in metabolic and endocrine regulations. J. Neurosci. 19, 1072–1087 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vaisse, C. et al. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nature Genet. 14, 95–97 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Bates, S. H. et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Gao, Q. et al. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc. Natl Acad. Sci. USA 101, 4661–4666 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Soares, S., von Boxberg, Y., Ravaille-Veron, M., Vincent, J. D. & Nothias, F. Morphofunctional plasticity in the adult hypothalamus induces regulation of polysialic acid-neural cell adhesion molecule through changing activity and expression levels of polysialyltransferases. J. Neurosci. 20, 2551–2557 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hoyk, Z., Parducz, A. & Theodosis, D. T. The highly sialylated isoform of the neural cell adhesion molecule is required for estradiol-induced morphological synaptic plasticity in the adult arcuate nucleus. Eur. J. Neurosci. 13, 649–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Parducz, A., Perez, J. & Garcia-Segura, L. M. Estradiol induces plasticity of GABAergic synapses in the hypothalamus. Neuroscience 53, 395–401 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Acampora, D. et al. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev. 13, 2787–2800 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Diano, S., Naftolin, F., Goglia, F. & Horvath, T. L. Fasting-induced increase in type II iodothyronine deiodinase activity and messenger ribonucleic acid levels is not reversed by thyroxine in the rat hypothalamus. Endocrinology 139, 2879–2884 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Horvath, T. L. et al. Brain UCP2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. J. Neurosci. 19, 10417–10427 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lanni, A., Moreno, M., Lombardi, A. & Goglia, F. Thyroid hormone and uncoupling proteins. FEBS Lett. 543, 5–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Diano, S. et al. Uncouling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for pre-conditioning. Endocrinology 144, 5014–5021 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Andersson, U. et al. AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 279, 12005–12008 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Minokoshi, Y. & Kahn, B. B. Role of AMP-activated protein kinase in leptin-induced fatty acid oxidation in muscle. Biochem. Soc. Trans. 31, 196–201 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Echtay, K. S. et al. Superoxide activates mitochondrial uncoupling proteins. Nature 415, 96–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. van den Top, M., Lee, K., Whyment, A. D., Blanks, A. M. & Spanswick, D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nature Neurosci. 7, 493–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Woolley, C. S. & McEwen, B. S. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J. Neurosci. 14, 7680–7687 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Leranth, C., Shanabrough, M. & Horvath, T. L. Hormonal regulation of hippocampal spine synapse density involves subcortical mediation. Neuroscience 101, 349–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Gustafson, D., Rothenberg, E., Blennow, K., Steen, B. & Skoog, I. An 18-year follow-up of overweight and risk of Alzheimer disease. Arch. Intern. Med. 163, 1524–1528 (2003).

    Article  PubMed  Google Scholar 

  98. Li, X. L. et al. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience 113, 607–615 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research projects of the authors associated with mechanisms discussed in this paper have been supported by the following institutes of the National Institute of Health (NIH): NCRR, NIA, NIDDK, NIMH and NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas L. Horvath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

AGRP

NPY

POMC1

STAT3

UCP2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horvath, T., Diano, S. The floating blueprint of hypothalamic feeding circuits. Nat Rev Neurosci 5, 662–667 (2004). https://doi.org/10.1038/nrn1479

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1479

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing