Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dimerization of retroviral RNA genomes: an inseparable pair

Key Points

  • Retroviruses are diploid and the two copies of the genome are non-covalently linked together. The main dimer linkage structure is located in the 5′ region of the genome.

  • In HIV-1, RNA dimerization is initiated by the base-pairing of a self-complementary sequence that is located in the loop of an RNA hairpin motif. This initial loose dimer is maturated into a more stable (tight) dimer.

  • In other retroviruses, initiation of RNA dimerization is more complicated and involves several sequences. In yeast retrotransposons, the tRNA species that is used as a reverse transcription primer participates in RNA dimerization in vitro.

  • In most retroviruses, RNA dimerization is a prerequisite for packaging of the genomic RNA. The HIV-1 dimerization initiation site identified in vitro is not the only sequence participating in RNA dimerization in vivo.

  • In cells, RNA dimerization is linked to trafficking of the Gag precursor protein and the RNA dimer can be used as a scaffold during viral assembly. Retroviral RNA dimers undergo conformational changes during virion maturation, but the structure of the in vivo matured dimer remains speculative.

  • RNA dimerization is crucial for reverse transcription and recombination. Drugs targeting RNA dimerization could potentially limit the emergence of multidrug-resistant viruses.

Abstract

Many viruses carry more than one segment of nucleic acid into the virion particle, but retroviruses are the only known group of viruses that contain two identical (or nearly identical) copies of the RNA genome within the virion. These RNA genomes are non-covalently joined together through a process known as genomic RNA dimerization. Uniquely, the RNA dimerization of the retroviral genome is of crucial importance for efficient retroviral replication. In this article, our current understanding of the relationship between retroviral genome conformation, dimerization and replication is reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the HIV-1 replication cycle.
Figure 2: The HIV-1 dimerization initiation site.
Figure 3: X-ray crystal structures of the kissing-loop complex and extended duplex of a 23-mer RNA (subtype A isolate).
Figure 4: Model showing the putative conformational switch that is proposed to regulate translation and packaging of the HIV-1 genomic RNA.

Similar content being viewed by others

References

  1. Bender, W. & Davidson, N. Mapping of poly(A) sequences in the electron microscope reveals unusual structure of type C oncornavirus RNA molecules. Cell 7, 595–607 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Bender, W. et al. High-molecular-weight RNAs of AKR, NZB, and wild mouse viruses and avian reticuloendotheliosis virus all have similar dimer structures. J. Virol. 25, 888–896 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kung, H. J. et al. RD-114, baboon, and woolly monkey viral RNAs compared in size and structure. Cell 7, 609–620 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Murti, K. G., Bondurant, M. & Tereba, A. Secondary structural features in the 70S RNAs of Moloney murine leukemia and Rous sarcoma viruses as observed by electron microscopy. J. Virol. 37, 411–419 (1981). References 1–4 provided definitive proof that retroviral RNA is dimeric in virions.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Roy, C. et al. An analytical study of the dimerization of in vitro generated RNA of Moloney murine leukemia virus MoMuLV. Nucleic Acids Res. 18, 7287–7292 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marquet, R. et al. Dimerization of human immunodeficiency virus (Type 1) RNA: stimulation by cations and possible mechanism. Nucleic Acids Res. 19, 2349–2357 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Darlix, J. L., Gabus, C., Nugeyre, M. T., Clavel, F. & Barre-Sinoussi, F. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1. J. Mol. Biol. 216, 689–99 (1990). References 5–7 were among the first to show that retroviral RNA can dimerize in vitro in the absence of proteins.

    Article  CAS  PubMed  Google Scholar 

  8. Skripkin, E., Paillart, J. -C., Marquet, R., Ehresmann, B. & Ehresmann, C. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc. Natl Acad. Sci. USA 91, 4945–4949 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paillart, J. -C., Marquet, R., Skripkin, E., Ehresmann, B. & Ehresmann, C. Mutational analysis of the bipartite dimer linkage structure of human immunodeficiency virus type 1 genomic RNA. J. Biol. Chem. 269, 27486–27493 (1994).

    CAS  PubMed  Google Scholar 

  10. Laughrea, M. & Jette, L. A 19-nucleotide sequence upstream of the 5′ major splice donor is part of the dimerization domain of human immunodeficiency virus 1 genomic RNA. Biochemistry 33, 13464–13474 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Clever, J. L., Wong, M. L. & Parslow, T. G. Requirements for kissing-loop-mediated dimerization of human immunodeficiency virus RNA. J. Virol. 70, 5902–5908 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Muriaux, D., Girard, P. -M., Bonnet-Mathonière, B. & Paoletti, J. Dimerization of HIV-1Lai RNA at low ionic strength: an autocomplementary sequence in the 5′ leader region is evidenced by an antisense oligonucleotide. J. Biol. Chem. 270, 8209–8216 (1995). References 8–12 were the first papers to identify a self-complementary sequence that is an important determinant for retroviral RNA dimerization.

    Article  CAS  PubMed  Google Scholar 

  13. Muriaux, D., Fosse, P. & Paoletti, J. A kissing complex together with a stable dimer is involved in the HIV-1Lai RNA dimerization process in vitro. Biochemistry 35, 5075–5082 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Paillart, J. -C., Westhof, E., Ehresmann, C., Ehresmann, B. & Marquet, R. Non-canonical interactions in a kissing loop complex: the dimerization initation site of HIV-1 genomic RNA. J. Mol. Biol. 270, 36–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Paillart, J. -C., Skripkin, E., Ehresmann, B., Ehresmann, C. & Marquet, R. A loop–loop 'kissing' complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc. Natl Acad. Sci. USA 93, 5572–5577 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laughrea, M., Shen, N., Jetté, L. & Wainberg, M. A. Variant effects of non-native kissing-loop hairpin palindromes on HIV-1 replication and HIV RNA dimerization. Biochemistry 38, 226–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Lodmell, J. S., Ehresmann, C., Ehresmann, B. & Marquet, R. Convergence of natural and artificial evolution on an RNA loop–loop interaction: the HIV-1 dimerization initiation site. RNA 6, 1267–1276 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lodmell, J. S., Ehresmann, C., Ehresmann, B. & Marquet, R. Structure and dimerization of HIV-1 kissing loop aptamers. J. Mol. Biol. 311, 475–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Jossinet, F., Lodmell, J. S., Ehresmann, C., Ehresmann, B. & Marquet, R. Identification of the in vitro HIV-2/SIV RNA dimerization site reveals striking differences with HIV-1. J. Biol. Chem. 276, 5598–5604 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Ennifar, E., Walter, P., Ehresmann, B., Ehresmann, C. & Dumas, P. Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nature Struct. Biol. 8, 1064–1068 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Girard, F. et al. Dimer initiation sequence of HIV-1Lai genomic RNA: NMR solution structure of the extended duplex. J. Biomol. Struct. Dyn. 16, 1145–1157 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Mujeeb, A., Clever, J. L., Billeci, T. M., James, T. L. & Parslow, T. G. Structure of the dimer initiation complex of HIV-1 genomic RNA. Nature Struct. Biol. 5, 432–436 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Ennifar, E. et al. The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure Fold. Des. 7, 1439–1449 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Mujeeb, A., Parslow, T. G., Zarrinpar, A., Das, C. & James, T. L. NMR structure of the mature dimer initiation complex of HIV-1 genomic RNA. FEBS Lett. 458, 387–392 (1999). References 20–24 provide structural data on the RNA dimerization complex.

    Article  CAS  PubMed  Google Scholar 

  25. Theilleux-Delalande, V., Girard, F., Huynh-Dinh, T., Lancelot, G. & Paoletti, J. The HIV-1Lai RNA dimerization. Thermodynamic parameters associated with the transition from the kissing complex to the extended dimer. Eur. J. Biochem. 267, 2711–2719 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Rist, M. J. & Marino, J. P. Mechanism of nucleocapsid protein catalyzed structural isomerization of the dimerization initiation site of HIV-1. Biochemistry 41, 14762–14770 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Mihailescu, M. R. & Marino, J. P. A proton-coupled dynamic conformational switch in the HIV-1 dimerization initiation site kissing complex. Proc. Natl Acad. Sci. USA 101, 1189–1194 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muriaux, D., De Rocquigny, H., Roques, B. & Paoletti, J. NCp7 activates HIV-1Lai RNA dimerization by converting a transient loop–loop complex into a stable dimer. J. Biol. Chem. 271, 33686–33692 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Feng, Y. -X. et al. HIV-1 nucleocapsid protein induces 'maturation' of dimeric retroviral RNA in vitro. Proc. Natl Acad. Sci. USA 93, 7577–7581 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prats, A. C. et al. elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA. J. Virol. 64, 774–783 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Takahashi, K. I. et al. Structural requirement for the two-step dimerization of human immunodeficiency virus type 1 genome. RNA 6, 96–102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laughrea, M. & Jetté, L. Kissing-loop model of HIV-1 genomic dimerization: HIV-1 RNAs can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248–271 are dispensable for dimeric formation. Biochemistry 35, 1589–1598 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Lanchy, J. M., Ivanovitch, J. D. & Lodmell, J. S. A structural linkage between the dimerization and encapsidation signals in HIV-2 leader RNA. RNA 9, 1007–1018 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marquet, R., Paillart, J. -C., Skripkin, E., Ehresmann, C. & Ehresmann, B. Dimerization of human immunodeficiency virus type 1 RNA involves sequences located upstream of the splice donor site. Nucleic Acids Res. 22, 145–151 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laughrea, M. & Jette, L. HIV-1 genome dimerization: kissing-loop hairpin dictates whether nucleotides downstream of the 5′ splice junction contribute to loose and tight dimerization of human immunodeficiency virus RNA. Biochemistry 36, 9501–9508 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Stewart, L., Schatz, G. & Vogt, V. M. Properties of avian retrovirus particles defective in viral protease. J. Virol. 64, 5076–5092 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Oertle, S. & Spahr, P. F. Role of the gag polyprotein precursor in packaging and maturation of Rous sarcoma virus genomic RNA. J. Virol. 64, 5757–5763 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu, W. & Rein, A. Maturation of dimeric viral RNA of Moloney murine leukemia virus. J. Virol. 67, 5443–5449 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fu, W., Gorelick, R. J. & Rein, A. Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions. J. Virol. 68, 5013–5018 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Feng, Y. -X., Moore, S. P., Garfinkel, D. J. & Rein, A. The genomic RNA in Ty1 virus-like particles is dimeric. J. Virol. 74, 10819–10821 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng, Y. -X. et al. The human immunodeficiency virus type 1 Gag polyprotein has nucleic acid chaperone activity: possible role in dimerization of genomic RNA and placement of tRNA on the primer binding site. J. Virol. 73, 4251–4256 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shen, N., Jetté, L., Liang, C., Wainberg, M. A. & Laughrea, M. Impact of human immunodeficiency virus type 1 RNA dimerization on viral infectivity and of stem-loop B on RNA dimerization and reverse transcription and dissociation of dimerization from packaging. J. Virol. 74, 5729–5735 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pattabiraman, N., Martinez, H. M. & Shapiro, B. A. Molecular modeling and dynamics studies of HIV-1 kissing loop structures. J. Biomol. Struct. Dyn. 20, 397–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Paillart, J. C., Skripkin, E., Ehresmann, B., Ehresmann, C. & Marquet, R. In vitro evidence for a long range pseudoknot in the 5′-untranslated and matrix coding regions of HIV-1 genomic RNA. J. Biol. Chem. 277, 5995–6004 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Abbink, T. E. & Berkhout, B. A novel long distance base-pairing interaction in human immunodeficiency virus type 1 RNA occludes the gag start codon. J. Biol. Chem. 278, 11601–1111 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Berkhout, B. et al. In vitro evidence that the untranslated leader of the HIV-1 genome as an RNA checkpoint that regulates multiple functions through conformational changes. J. Biol. Chem. 277, 19967–19975 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Berkhout, B. & van Wamel, J. L. B. The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure. RNA 6, 282–295 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huthoff, H. & Berkhout, B. Mutations in the TAR hairpin affect the equilibrium between alternative conformations of the HIV-1 leader RNA. Nucleic Acids Res. 29, 2594–2600 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huthoff, H. & Berkhout, B. Two alternating structures of the HIV-1 leader RNA. RNA 7, 143–157 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lanchy, J. M. & Lodmell, J. S. Alternate usage of two dimerization initiation sites in HIV-2 viral RNA in vitro. J. Mol. Biol. 319, 637–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Lanchy, J. M., Rentz, C. A., Ivanovitch, J. D. & Lodmell, J. S. Elements located upstream and downstream of the major splice donor site influence the ability of HIV-2 leader RNA to dimerize in vitro. Biochemistry 42, 2634–2642 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Andersen, E. S. et al. Role of the TAR hairpin in dimerization of HIV-1 RNA. J. Biol. Chem. (Mar 2004) doi: 10.1074/jbc.M314326200.

  53. Höglund, S., Öhagen, A., Goncalves, J., Panganiban, A. T. & Gabuzda, D. Ultrstructure of HIV-1 genomic RNA. Virology 233, 271–279 (1997).

    Article  PubMed  Google Scholar 

  54. Brasey, A. et al. The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J. Virol. 77, 3939–3949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dirac, A. M., Huthoff, H., Kjems, J. & Berkhout, B. The dimer initiation site hairpin mediates dimerization of the human immunodeficiency virus, type 2 RNA genome. J. Biol. Chem. 276, 32345–32352 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Le Blanc, I., Greatorex, J., Dokhelar, M. C. & Lever, A. M. A 37-base sequence in the leader region of human T-cell leukaemia virus type I is a high affinity dimerization site but is not essential for virus replication. J. Gen. Virol. 81, S105–S108 (2000).

    Article  Google Scholar 

  57. Monie, T., Greatorex, J. & Lever, A. M. Oligonucleotide mapping of the core genomic RNA dimer linkage in human T-cell leukaemia virus type-1. Virus Res. 78, 45–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Greatorex, J. S., Laisse, V., Dokhelar, M. -C. & Lever, A. M. L. Sequences involved in the dimerisation of human T cell leukaemia virus type-1 RNA. Nucleic Acids Res. 24, 2919–2923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Erlwein, O., Cain, D., Fischer, N., Rethwilm, A. & McClure, M. O. Identification of sites that act together to direct dimerization of human foamy virus RNA in vitro. Virology 229, 251–258 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Cain, D., Erlwein, O., Grigg, A., Russell, R. A. & McClure, M. O. Palindromic sequence plays a critical role in human foamy virus dimerization. J. Virol. 75, 3731–3739 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Park, J. & Mergia, A. Mutational analysis of the 5′ leader region of simian foamy virus type 1. Virology 274, 203–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Katoh, I., Kyushiki, H., Sakamoto, Y., Ikawa, Y. & Yoshinaka, Y. Bovine leukemia virus matrix-associated protein MA(p15): further processing and formation of a specific complex with the dimer of the 5′-terminal genomic RNA fragment. J. Virol. 65, 6845–6855 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Katoh, I., Yasunaga, T. & Yoshinaka, Y. Bovine leukemia virus RNA sequences involved in dimerization and specific Gag protein binding: close relation to the packaging site of avian, murine, and human retroviruses. J. Virol. 67, 1830–1839 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Polge, E., Darlix, J. L., Paoletti, J. & Fosse, P. Characterization of loose and tight dimer forms of avian leukosis virus RNA. J. Mol. Biol. 300, 41–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Fosse, P. et al. A short autocomplementary sequence plays an essential role in avian sarcoma-leukosis virus RNA dimerization. Biochemistry 35, 16601–16609 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Bieth, E., Gabus, C. & Darlix, J. -L. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro. Nucleic Acids Res. 18, 119–127 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Darlix, J. L., Gabus, C. & Allain, B. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro. J. Virol. 66, 7245–7252 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lear, A. L., Haddrick, M. & Heaphy, S. A study of the dimerization of Rous sarcoma virus RNA in vitro and in vivo. Virology 212, 47–57 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Torrent, C., Gabus, C. & Darlix, J. L. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer. J. Virol. 68, 661–667 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Girard, P. -M., Bonnet-Mathonière, B., Muriaux, D. & Paoletti, J. A short autocomplementary sequence in the 5′ leader region is responsible for dimerization of MoMuLV genomic RNA. Biochemistry 34, 9785–9794 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Oroudjev, E. M., Kang, P. C. & Kohlstaedt, L. A. An additional dimer linkage structure in Moloney murine leukemia virus RNA. J. Mol. Biol. 291, 603–613 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Ly, H., Nierlich, D. P., Olsen, J. C. & Kaplan, A. H. Moloney murine sarcoma virus genomic RNAs dimerize via a two-step process: a concentration-dependent kissing-loop interaction is driven by initial contact between conscutive guanines. J. Virol. 73, 7255–7261 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ly, H., Nierlich, D. P., Olsen, J. C. & Kaplan, A. H. Functional characterization of the dimer linkage structure RNA of Moloney murine sarcoma virus. J. Virol. 74, 9937–9945 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ly, H. & Parslow, T. G. Bipartite signal for genomic RNA dimerization in Moloney murine leukemia virus. J. Virol. 76, 3135–3144 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. De Tapia, M., Metzler, V., Mougel, M., Ehresmann, B. & Ehresmann, C. Dimerization of MoMuLV genomic RNA: redefinition of the role of the palindromic stem-loop H1 (278-303) and new roles for stem-loops H2 (310- 352) and H3 (355-374). Biochemistry 37, 6077–6085 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Dirac, A. M., Huthoff, H., Kjems, J. & Berkhout, B. Regulated HIV-2 RNA dimerization by means of alternative RNA conformations. Nucleic Acids Res. 30, 2647–2655 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rasmussen, S. V., Mikkelsen, J. G. & Pedersen, F. S. Modulation of homo- and heterodimerization of Harvey sarcoma virus RNA by GACG tetraloops and point mutations in palindromic sequences. J. Mol. Biol. 323, 613–628 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kim, C. H. & Tinoco, I. Jr. A retroviral RNA kissing complex containing only two GC base pairs. Proc. Natl Acad. Sci. USA 97, 9396–9401 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Berkhout, B. & van Wamel, J. L. B. Role of the DIS hairpin in replication of human immunodeficiency virus type 1. J. Virol. 70, 6723–6732 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Clever, J. L. & Parslow, T. G. Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation. J. Virol. 71, 3407–3414 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Haddrick, M., Lear, A. L., Cann, A. J. & Heaphy, S. Evidence that a kissing loop structure facilitates genomic RNA dimerisation in HIV-1. J. Mol. Biol. 259, 58–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Laughrea, M. et al. Mutations in the kissing loop hairpin of human immunodeficiency virus type 1 reduce viral infectivity as well as genomic RNA packaging and dimerization. J. Virol. 71, 3397–3406 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Liang, C. et al. Deletion mutagenesis within the dimerization initation site of human immunodeficiency virus type 1 results in delayed processing of the p2 peptide from precursor proteins. J. Virol. 73, 6147–6151 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Liang, C. et al. Mutations within four distinct Gag proteins are required to restore replication of human immunodeficiency virus type 1 after deletion mutagenesis within the dimerization initation site. J. Virol. 73, 7014–7020 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Paillart, J. C. et al. A dual role of the putative RNA dimerization initation site of human immunodeficiency virus type 1 in genomic RNA packaging and proviral DNA synthesis. J. Virol. 70, 8348–8354 (1996). References 79–82 and 85 were among the first to show the role of RNA dimerization in retroviral replication, RNA packaging and reverse transciption.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Russell, R. S. et al. Effects of a single amino acid substitution within the p2 region of human immunodeficiency virus type 1 on packaging of spliced viral RNA. J. Virol. 77, 12986–12995 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ortiz-Conde, B. A. & Hughes, S. H. Studies of the genomic RNA of leukosis viruses: implications for RNA dimerization. J. Virol. 73, 7165–7174 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sakuragi, J. -I. & Panganiban, A. T. Human immunodeficiency virus type 1 RNA outside the primary encapsidation and dimer linkage region affects RNA dimer stability in vitro. J. Virol. 71, 3250–3254 (1997). References 87 and 88 show that the dimer linkage structure is not the only region for dimeric RNA interaction.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Berkhout, B. Structure and function of the human immunodeficiency virus leader RNA. Prog. Nucleic Acid Res. Mol. Biol. 54, 1–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Shen, N., Jette, L., Wainberg, M. A. & Laughrea, M. Role of stem B, loop B, and nucleotides next to the primer binding site and the kissing-loop domain in human immunodeficiency virus type 1 replication and genomic-RNA dimerization. J. Virol. 75, 10543–10549 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hill, M. K. et al. The dimer initiation sequence stem-loop of human immunodeficiency virus type 1 is dispensable for viral replication in peripheral blood mononuclear cells. J. Virol. 77, 8329–8335 (2003). This paper shows that requirement for the DIS stem in HIV-1 replication is cell-type dependent.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Russell, R. S. et al. Sequences downstream of the 5′ splice donor site are required for both packaging and dimerization of human immunodeficiency virus type 1 RNA. J. Virol. 77, 84–96 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Russell, R. S., Hu, J., Laughrea, M., Wainberg, M. A. & Liang, C. Deficient dimerization of human immunodeficiency virus type 1 RNA caused by mutations of the U5 RNA sequences. Virology 303, 152–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Sakuragi, J., Ueda, S., Iwamoto, A. & Shioda, T. Possible role of dimerization in human immunodeficiency virus type 1 genome RNA packaging. J. Virol. 77, 4060–4069 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rong, L. et al. Deletion of stem loop 3 is compensated by second-site mutations within the Gag protein of human immunodeficiency virus type 1. Virology 314, 221–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Cen, S. et al. The role of Pr55(gag) in the annealing of tRNALys3 to human immunodeficiency virus type 1 genomic RNA. J. Virol. 73, 4485–4488 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rong, L. et al. Roles of the human immunodeficiency virus type 1 nucleocapsid protein in annealing and initation versus elongation in reverse transcription of viral negative-strand strong-stop DNA. J. Virol. 72, 9353–9358 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cen, S. et al. Roles of Pr55(gag) and NCp7 in tRNA(3)(Lys) genomic placement and the initiation step of reverse transcription in human immunodeficiency virus type 1. J. Virol. 74, 10796–10800 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gabus, C. et al. The yeast Ty3 retrotransposon contains a 5′–3′ bipartite primer-binding site and encodes nucleocapsid protein NCp9 functionally homologous to HIV-1 NCp7. EMBO J. 17, 4873–4880 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cristofari, G., Ficheux, D. & Darlix, J. L. The GAG-like protein of the yeast Ty1 retrotransposon contains a nucleic acid chaperone domain analogous to retroviral nucleocapsid proteins. J. Biol. Chem. 275, 19210–19217 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Berkhout, B., Das, A. T. & van Wamel, J. L. The native structure of the human immunodeficiency virus type 1 RNA genome is required for the first strand transfer of reverse transcription. Virology 249, 211–218 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Cheung, K. S., Smith, R. E., Stone, M. P. & Joklik, W. K. Comparison of immature (rapid harvest) and mature Rous sarcoma virus particles. Virology 50, 851–864 (1972).

    Article  CAS  PubMed  Google Scholar 

  103. Canaani, E., Helm, K. V. D. & Duesberg, P. Evidence for the 30–40S RNA as precursor of the 60–70S RNA of Rous sarcoma virus. Proc. Natl Acad. Sci. USA 70, 401–405 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Levin, J. G., Grimley, P. M., Ramseur, J. M. & Berezesky, I. K. Deficiency of 60 to 70S RNA in murine leukemia virus particles assembled in cells treated with actinomycin D. J. Virol. 14, 152–161 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. McBride, M. S. & Panganiban, A. T. Position dependence of functional hairpins important for human immunodeficiency virus type 1 RNA encapsidation in vivo. J. Virol. 71, 2050–2058 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. McBride, M. S. & Panganiban, A. T. The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures. J. Virol. 70, 2963–2973 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Harrison, G. P., Miele, G., Hunter, E. & Lever, A. M. Functional analysis of the core human immunodeficiency virus type 1 packaging signal in a permissive cell line. J. Virol. 72, 5886–5896 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Parent, L. J. et al. RNA dimerization defect in a Rous sarcoma virus matrix mutant. J. Virol. 74, 164–172 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Garbitt, R. A., Albert, J. A., Kessler, M. D. & Parent, L. J. Trans-acting inhibition of genomic RNA dimerization by Rous sarcoma virus matrix mutants. J. Virol. 75, 260–268 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sakuragi, J., Iwamoto, A. & Shioda, T. Dissociation of genome dimerization from packaging functions and virion maturation of human immunodeficiency virus type 1. J. Virol. 76, 959–967 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sakuragi, J., Shioda, T. & Panganiban, A. T. Duplication of the primary encapsidation and dimer linkage region of human immunodeficiency virus type 1 RNA results in the appearance of monomeric RNA in virions. J. Virol. 75, 2557–2565 (2001). References 110 and 111 describe a novel system to separate the function of RNA packaging from RNA dimerization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shehu-Xhilaga, M., Crowe, S. M. & Mak, J. Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J. Virol. 75, 1834–1841 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dupont, S. et al. A novel nuclear export activity in HIV-1 matrix protein required for viral replication. Nature 402, 681–685 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Scheifele, L. Z., Garbitt, R. A., Rhoads, J. D. & Parent, L. J. Nuclear entry and CRM1-dependent nuclear export of the Rous sarcoma virus Gag polyprotein. Proc. Natl Acad. Sci. USA 99, 3944–3949 (2002). References 108–109, 113 and 114 present a strong correlation that the trafficking of retroviral Gag might influence the dimerization of viral RNA genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mouland, A. J. et al. RNA trafficking signals in human immunodeficiency virus type 1. Mol. Cell. Biol. 21, 2133–2143 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mouland, A. J. et al. The double-stranded RNA-binding protein Staufen is incorporated in human immunodeficiency virus type 1: evidence for a role in genomic RNA encapsidation. J. Virol. 74, 5441–5451 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chatel-Chaix, L. et al. Identification of Staufen in the human immunodeficiency virus type 1 Gag ribonucleoprotein complex and a role in generating infectious viral particles. Mol. Cell. Biol. 24, 2637–2648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ferrandon, D., Koch, I., Westhof, E. & Nusslein-Volhard, C. RNA–RNA interaction is required for the formation of specific bicoid mRNA 3′ UTR-STAUFEN ribonucleoprotein particles. EMBO J. 16, 1751–1758 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Freed, E. O. HIV-1 Gag proteins: diverse functions in the virus life cycle. Virology 251, 1–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Freed, E. O. The HIV-TSG101 interface: recent advances in a budding field. Trends Microbiol. 11, 56–59 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Kaplan, A. H., Manchester, M. & Swanstrom, R. The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release to occur with maximum efficiency. J. Virol. 68, 6782–6786 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gottlinger, H. G., Sodroski, J. G. & Haseltine, W. A. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 86, 5781–5785 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Katoh, I. et al. Murine leukemia virus mutation: protease region required for conversion from 'immature' to 'mature' core form and for virus infectivity. Virology 145, 280–292 (1985).

    Article  CAS  PubMed  Google Scholar 

  124. Campbell, S. & Vogt, V. M. In vitro assembly of virus-like particles with Rous sarcoma virus gag deletion mutants: identification of the p10 domain as a morphological determinant in the formation of spherical particles. J. Virol. 71, 4425–4435 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Campbell, S. & Vogt, V. M. Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J. Virol. 69, 6487–6497 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Campbell, S. & Rein, A. In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain. J. Virol. 73, 2270–2279 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Muriaux, D., Mirro, J., Harvin, D. & Rein, A. RNA is a structural element in retroviral particles. Proc. Natl Acad. Sci. USA 98, 5246–5251 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang, S. W., Noonan, K. & Aldovini, A. Nucleocapsid–RNA interactions are essential to structural stability but not to assembly of retroviruses. J. Virol. 78, 716–723 (2004). Together, references 124–128 show the importance of RNA in the assembly and/or the stability of virion particles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stoltzfus, C. M. & Snyder, P. N. Structure of B77 sarcoma virus RNA: stabilization of RNA after packaging. J. Virol. 64, 1161–1170 (1975). Collectively, references 36–38, 102, 103 and 129 show that a virion RNA genome undergoes conformational changes during virion maturation.

    Google Scholar 

  130. Pettit, S. C., Sheng, N., Tritch, R., Erickson-Vitanen, S. & Swanstrom, R. The regulation of sequential processing of HIV-1 Gag by the viral protease. Adv. Exp. Med. Biol. 436, 15–25 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Shehu-Xhilaga, M. et al. Proteolytic processing of the p2/nucleocapsid cleavage site is critical for human immunodeficiency virus type1 RNA dimer maturation. J. Virol. 75, 9156–9164 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Oshima, M. et al. Effects of blocking individual maturation cleavages in murine leukemia virus Gag. J. Virol. 78, 1411–1420 (2004). References 7, 29, 30, 68, 131 and 132 highlight the importance of nucleocapsid in in vitro and in vivo RNA dimerization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sheng, N. et al. Determinants of the human immunodeficiency virus type 1 p15NC–RNA interaction that affect enhanced cleavage by the viral protease. J. Virol. 71, 5723–5732 (1997). Together, references 83–84, 95 and 133 show that the RNA sequence itself might have an important role in virion protein processing.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Liang, C., Rong, L., Laughrea, M., Kleiman, L. & Wainberg, M. A. Compensatory point mutations in the human immunodeficiency virus type 1 Gag region that are distal from deletion mutations in the dimerization initation site can restore viral replication. J. Virol. 72, 6629–6636 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Panganiban, A. T. & Fiore, D. Ordered interstrand and intrastrand DNA transfer during reverse transcription. Science 241, 1064–1069 (1988).

    Article  CAS  PubMed  Google Scholar 

  136. Hu, W. S. & Temin, H. M. Retroviral recombination and reverse transcription. Science 250, 1227–1233 (1990).

    Article  CAS  PubMed  Google Scholar 

  137. van Wamel, J. L. & Berkhout, B. The first strand transfer during HIV-1 reverse transcription can occur either intramolecularly or intermolecularly. Virology 244, 245–251 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Temin, H. M. Sex and recombination in retroviruses. Trends Genet. 7, 71–74 (1991).

    Article  CAS  PubMed  Google Scholar 

  139. Mikkelsen, J. G., Lund, A. H., Duch, M. & Pedersen, F. S. Recombination in the 5′ leader of murine leukemia virus is accurate and influenced by sequence identity with a strong bias toward the kissing-loop dimerization region. 72, 6967–6978 (1998).

  140. Mikkelsen, J. G., Lund, A. H., Dybkaer, K., Duch, M. & Pedersen, F. S. Extended minus-strand DNA as template for R-U5-mediated second-strand transfer in recombinational rescue of prime binding site-modified retroviral vectors. J. Virol. 72, 2519–2525 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mikkelsen, J. G. et al. A preferred region for recombinational patch repair in the 5′ untranslated region of primer binding site-impaired murine leukemia virus vectors. J. Virol. 70, 1439–1447 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Mikkelsen, J. G., Lund, A. H., Duch, M. & Pedersen, F. S. Mutations of the kissing-loop dimerization sequence influence the site specificity of murine leukemia virus recombination in vivo. J. Virol. 74, 600–610 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lund, A. H., Mikkelsen, J. G., Schmidt, J., Duch, M. & Pedersen, F. S. The kissing-loop motif is a preferred site of 5′ leader recombination during replication of SL3-3 murine leukemia viruses in mice. J. Virol. 73, 9614–9618 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Balakrishnan, M., Fay, P. J. & Bambara, R. A. The kissing hairpin sequence promotes recombination within the HIV-I 5′ leader region. J. Biol. Chem. 276, 36482–36492 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Balakrishnan, M., Roques, B. P., Fay, P. J. & Bambara, R. A. Template dimerization promotes an acceptor invasion-induced transfer mechanism during human immunodeficiency virus type 1 minus-strand synthesis. J. Virol. 77, 4710–4721 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Andersen, E. S., Jeeninga, R. E., Damgaard, C. K., Berkhout, B. & Kjems, J. Dimerization and template switching in the 5′ untranslated region between various subtypes of human immunodeficiency virus type 1. J. Virol. 77, 3020–3030 (2003). References 101, 138–142 and 144–146 demonstrate that dimerization of the RNA genome is important for template switching and recombination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Piyasirisilp, S. et al. A recent outbreak of human immunodeficiency virus type 1 infection in southern China was initiated by two highly homogeneous, geographically separated strains, circulating recombinant form AE and a novel BC recombinant. J. Virol. 74, 11286–11295 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Su, L. et al. Characterization of a virtually full-length human immunodeficiency virus type 1 genome of a prevalent intersubtype (C/B′) recombinant strain in China. J. Virol. 74, 11367–11376 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Moutouh, L., Corbeil, J. & Richman, D. D. Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc. Natl Acad. Sci. USA 93, 6106–6111 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yusa, K., Kavlick, M. F., Kosalaraksa, P. & Mitsuya, H. HIV-1 acquires resistance to two classes of antiviral drugs through homologous recombination. Antiviral. Res. 36, 179–189 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. Jung, A. et al. Multiply infected spleen cells in HIV patients. Nature 418, 144 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Dang, Q. et al. Nonrandom HIV-1 infection and double infection via direct and cell-mediated pathways. Proc. Natl Acad. Sci. USA 101, 632–637 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Levy, D. N., Aldrovandi, G. M., Kutsch, O. & Shaw, G. M. Dynamics of HIV-1 recombination in its natural target cells. Proc. Natl Acad. Sci. USA 101, 4204–4209 (2004). References 151–153 demonstrate that double infection of HIV-1 and recombinations are likely to occur frequently in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ennifar, E. et al. HIV-1 RNA dimerization initiation site is structurally similar to the ribosomal A site and binds aminoglycoside antibiotics. J. Biol. Chem. 278, 2723–2730 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. McPike, M. P., Sullivan, J. M., Goodisman, J. & Dabrowiak, J. C. Footprinting, circular dichroism and UV melting studies on neomycin B binding to the packaging region of human immunodeficiency virus type-1 RNA. Nucleic Acids Res. 30, 2825–2831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kim, H. J., Lee, K. & O'Rear, J. J. A short sequence upstream of the 5′ splice site is important for encapsidation of HIV-1 genomic RNA. Virology 198, 336–340 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.-C.P. and R.M. thank B. Ehresmann and C. Ehresmann for their constant interest and support, and thank the former members of the Ehresmann laboratory for their contribution to the study of retroviral RNA dimerization. M.S.-X. and J.M. thank S. Campbell for her assistance in some of the graphic design, plus former and current members of the Burnet Institute for their support and contribution to the study of retroviral assembly. We thank all our reviewers for their insightful comments, and apologize to those colleagues whose research has not been highlighted owing to length constrains. The selected examples merely reflect our personal interest. This work was supported by the Agence Nationale de Recherches sur le SIDA in France, and the Australian National Health and Medical Research Council C. J. Martin Fellowship, Monash University and Pharmacia–Pfizer Foundation in Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roland Marquet or Johnson Mak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

HIV-1

HIV-2

SwissProt

Gag

FURTHER INFORMATION

Johnson Mak's laboratory

Roland Marquet's laboratory

Glossary

KISSING-LOOP COMPLEX

Formed when two RNA hairpins interact through their complementary loops.

EXTENDED DUPLEX

A complex that results from complete intermolecular base-pairing of two stem loops. It can be obtained from the kissing-loop complex by disrupting the intramolecular stems and forming intermolecular base-pairs.

IN VIVO MATURATION

A process that depends on the processing of the polyprotein Gag and results in increased thermal stability of the RNA dimer.

5′-UNTRANSLATED REGION

(5′-UTR). An RNA sequence that is found upstream of the protein-coding sequence.

RETROVIRAL RECOMBINATION

A process to generate new strains of retroviruses by mixing genetic materials of two different strains of parental retroviruses.

CRM1

(Chromosome region maintenance 1). A cellular protein that mediates the nuclear export of numerous proteins.

HAART

(Highly Active Antiretroviral Treatment). Consists of a minimum of three drugs that inhibit the activity of the viral enzymes reverse transcriptase or protease. The first compound of a third drug class, the fusion inhibitors, has recently been approved for treatment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paillart, JC., Shehu-Xhilaga, M., Marquet, R. et al. Dimerization of retroviral RNA genomes: an inseparable pair. Nat Rev Microbiol 2, 461–472 (2004). https://doi.org/10.1038/nrmicro903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing