Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Explaining microbial genomic diversity in light of evolutionary ecology

Key Points

  • Surveys of closely related bacteria and archaea reveal that they have a high degree of genomic diversity, which manifests as single-nucleotide polymorphisms and gene-content variation. To meaningfully interpret the underlying causes of such diversity, it is necessary to clearly define populations — that is, groups of organisms that share a common gene pool and exhibit ecological associations within the same environment and are hence subject to similar selection pressures.

  • High gene frequencies reflect stable selective pressures at the population level, whereas flexible gene content can be partitioned into medium and low gene frequencies to distinguish between different forms of frequency-dependent selection. Such gene categorization enables the generation of hypotheses relating to ecological and evolutionary dynamics.

  • Low-frequency genes often encode different variants of surface structures and have fast rates of turnover, which enables evasion from predators and host immunity; however, the high rate of gene turnover also means that there is low linkage with other genes in the genome, which makes scenarios such as 'kill-the-winner' unlikely explanations for limiting the spread of adaptive clones within populations.

  • Frequency-dependent selection, such as that which arises from social interactions or metabolic trade-offs, can explain the emergence of medium-frequency genes. Moreover, a comparison with animal and plant populations suggests that another role of phenotypic diversity among individuals is population-level synergism, which results from niche complementation.

  • The fact that populations of bacteria and archaea can be regarded as interacting units is also suggested by several studies that have shown asymmetry in the way in which organisms interact within and between populations. Within populations, signalling seems to be increased and antagonism is reduced.

Abstract

Comparisons of closely related microorganisms have shown that individual genomes can be highly diverse in terms of gene content. In this Review, we discuss several studies showing that much of this variation is associated with social and ecological interactions, which have an important role in the population biology of wild populations of bacteria and archaea. These interactions create frequency-dependent selective pressures that can either stabilize gene frequencies at intermediate levels in populations or promote fast gene turnover, which presents as low gene frequencies in genome surveys. Thus, interpretation of gene-content diversity requires the delineation of populations according to cohesive gene flow and ecology, as micro-evolutionary changes arise in response to local selection pressures and population dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene frequencies and their interpretation in terms of evolutionary and ecological processes.
Figure 2: The role of low gene frequencies and low genetic linkage in bacteria–phage interactions.
Figure 3: Social cheating in natural populations and its role in generating medium-frequency genes.
Figure 4: Asymmetry in intrapopulation versus interpopulation interactions.

Similar content being viewed by others

References

  1. Gevers, D. et al. Opinion: re-evaluating prokaryotic species. Nature Rev. Microbiol. 3, 733–739 (2005).

    Article  CAS  Google Scholar 

  2. Koeppel, A. et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc. Natl Acad. Sci. USA 105, 2504–2509 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Achtman, M. & Wagner, M. Microbial diversity and the genetic nature of microbial species. Nature Rev. Microbiol. 6, 431–440 (2008).

    Article  CAS  Google Scholar 

  4. Fraser, C., Alm, E. J., Polz, M. F., Spratt, B. G. & Hanage, W. P. The bacterial species challenge: making sense of genetic and ecological diversity. Science 323, 741–746 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Polz, M. F., Alm, E. J. & Hanage, W. P. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 29, 170–175 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Polz, M. F., Hunt, D. E., Preheim, S. P. & Weinreich, D. M. Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Phil. Trans. R. Soc. 361, 2009–2021 (2006).

    Article  Google Scholar 

  7. Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Hunt, D. E. et al. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320, 1081–1085 (2008). This study shows that the population structure of co-existing Vibrionaceae can be identified using co-clustering of phylogenetic and ecological signals.

    Article  CAS  PubMed  Google Scholar 

  9. Connor, N. et al. Ecology of speciation in the genus Bacillus. Appl. Environ. Microbiol. 76, 1349–1358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. Mol. Biol. Evol. 22, 2354–2361 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Denef, V. J., Mueller, R. S. & Banfield, J. F. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J. 4, 599–610 (2010).

    Article  PubMed  Google Scholar 

  12. Oakley, B. B., Carbonero, F., van der Gast, C. J., Hawkins, R. J. & Purdy, K. J. Evolutionary divergence and biogeography of sympatric niche-differentiated bacterial populations. ISME J. 4, 488–497 (2010).

    Article  PubMed  Google Scholar 

  13. Hahn, M. W. et al. The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living polynucleobacter population. PLoS ONE 7, e32772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012). This study shows that natural populations of Vibrio cyclitrophicus are highly recombinant and that ecological differentiation between nascent populations is accompanied not by clonal expansions but by the emergence of recombination boundaries owing to microgeographic separation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simmons, S. L. et al. Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biol. 6, e177 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cadillo-Quiroz, H. et al. Patterns of gene flow define species of thermophilic archaea. PLoS Biol. 10, e1001265 (2012). This study documents ongoing speciation in two populations of the archaeon Sulpholobus islandicus and suggests that recombination between populations has been gradually decreasing over time with no detectable evidence of loss of diversity owing to genome-wide sweeps.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whitaker, R. J. Allopatric origins of microbial species. Phil. Trans. R. Soc. 361, 1975–1984 (2006).

    Article  Google Scholar 

  18. Fraser, C., Hanage, W. P. & Spratt, B. G. Recombination and the nature of bacterial speciation. Science 315, 476–480 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cohan, F. M. Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Phil. Trans. R. Soc. 361, 1985–1996 (2006).

    Article  Google Scholar 

  20. Gudelj, I. et al. An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure. Ecol. Lett. 13, 1073–1084 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thompson, J. R. et al. Genotypic diversity within a natural coastal bacterioplankton population. Science 307, 1311–1313 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kettler, G. C. et al. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet. 3, e231 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tettelin, H., Riley, D., Cattuto, C. & Medini, D. Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477 (2008). This comparative study provides flexible genome statistics from across different taxonomic groups.

    Article  CAS  PubMed  Google Scholar 

  24. Hejnova, J. et al. Characterization of the flexible genome complement of the commensal Escherichia coli strain A0 34/86 (O83: K24: H31). Microbiology 151, 385–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Genung, M. A. et al. Non-additive effects of genotypic diversity increase floral abundance and abundance of floral visitors. PLoS ONE 5, e8711 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cook-Patton, S. C., McArt, S. H., Parachnowitsch, A. L., Thaler, J. S. & Agrawal, A. A. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92, 915–923 (2011).

    Article  PubMed  Google Scholar 

  27. Drummond, E. B. M. & Vellend, M. Genotypic diversity effects on the performance of Taraxacum officinale populations increase with time and environmental favorability. PLoS ONE 7, e30314 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crutsinger, G. M. et al. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313, 966–968 (2006). This study shows the impact of plant genotypic diversity on net primary productivity above ground as well as on the diversity of associated arthropod communities.

    Article  CAS  PubMed  Google Scholar 

  29. Reusch, T. B. H., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl Acad. Sci. USA 102, 2826–2831 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roger, F., Godhe, A. & Gamfeldt, L. Genetic diversity and ecosystem functioning in the face of multiple stressors. PLoS ONE 7, e45007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eisenhauer, N., Scheu, S. & Jousset, A. Bacterial diversity stabilizes community productivity. PLoS ONE 7, e34517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Hughes, A. R. & Stachowicz, J. J. Ecological impacts of genotypic diversity in the clonal seagrass Zostera marina. Ecology 90, 1412–1419 (2009).

    Article  PubMed  Google Scholar 

  34. Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011). This theoretical study discusses the fundamental forms by which genotypic diversity within a species can influence ecological function.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).

    Article  PubMed  Google Scholar 

  36. Cordero, O. X. & Hogeweg, P. The impact of long-distance horizontal gene transfer on prokaryotic genome size. Proc. Natl Acad. Sci. USA 106, 21748–21753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cordero, O. X. et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337, 1228–1231 (2012). This study shows asymmetry in the intensity of interference competition between and within bacterioplankton populations. The findings reveal that antagonism occurs more often between, rather than within, populations.

    Article  CAS  PubMed  Google Scholar 

  38. Cordero, O. X., Ventouras, L.-A., DeLong, E. F. & Polz, M. F. Public good games drive the evolution of iron-aquisition strategies in natural bacterioplankton populations. Proc. Natl Acad. Sci. USA 109, 20059–20064 (2012). This study shows that the evolution of cheaters explains the intermediate frequency of siderophore-biosynthesis genes in Vibrio spp. populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Figge, F. Bio-folio: applying portfolio theory to biodiversity. Biodivers. Conserv. 13, 827–849 (2004).

    Article  Google Scholar 

  40. Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010). This study shows that the portfolio effect stabilizes salmon populations, despite exploitation by fishing.

    Article  CAS  PubMed  Google Scholar 

  41. Galhardo, R. S., Hastings, P. J. & Rosenberg, S. M. Mutation as a stress response and the regulation of evolvability. Crit. Rev. Biochem. Mol. Biol. 42, 399–435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Loh, E., Salk, J. J. & Loeb, L. A. Optimization of DNA polymerase mutation rates during bacterial evolution. Proc. Natl Acad. Sci. USA 107, 1154–1159 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Palmer, K. L. & Gilmore, M. S. Multidrug-resistant enterococci lack CRISPR–Cas. mBio 1, e00227–00210 (2010). This study shows that some enteroccoci have lost CRISPR–Cas-mediated resistance to foreign DNA, which increases evolvability.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jousset, A., Schulz, W., Scheu, S. & Eisenhauer, N. Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities. ISME J. 5, 1108–1114 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coleman, M. L. & Chisholm, S. W. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc. Natl Acad. Sci. USA 107, 18634–18639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsiao, W. W. L. et al. Evidence of a large novel gene pool associated with prokaryotic genomic islands. PLoS Genet. 1, e62 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Boucher, Y. et al. Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. mBio 2, e00335–00310 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Berg, O. G. & Kurland, C. G. Evolution of microbial genomes: sequence acquisition and loss. Mol. Biol. Evol. 19, 2265–2276 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nature Rev. Microbiol. 7, 828–836 (2009).

    Article  CAS  Google Scholar 

  51. Sinervo, B. & Lively, C. M. The rock–paper–scissors game and the evolution of alternative male strategies. Nature 380, 240–243 (1996).

    Article  CAS  Google Scholar 

  52. Borghans, J. A. M., Beltman, J. B. & De Boer, R. J. MHC polymorphism under host–pathogen coevolution. Immunogenetics 55, 732–739 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Gigord, L. D., Macnair, M. R. & Smithson, A. Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soo. Proc. Natl Acad. Sci. USA 98, 6253–6255 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fitzpatrick, B. M., Shook, K. & Izally, R. Frequency-dependent selection by wild birds promotes polymorphism in model salamanders. BMC Ecol. 9, 12 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Coleman, M. L. et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science 311, 1768–1770 (2006). This study shows that hypervariable regions in the genome (known as genomic islands) are characteristic of an abundant marine cyanobacterial clade.

    Article  CAS  PubMed  Google Scholar 

  56. Wildschutte, H., Preheim, S. P., Hernandez, Y. & Polz, M. F. O-antigen diversity and lateral transfer of the wbe region among Vibrio splendidus isolates. Env. Microbiol. 12, 2977–2987 (2010).

    Article  CAS  Google Scholar 

  57. Wildschutte, H., Wolfe, D. M., Tamewitz, A. & Lawrence, J. G. Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella. Proc. Natl Acad. Sci. USA 101, 10644–10649 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Needham, B. D. & Trent, M. S. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nature Rev. Microbiol. 11, 467–481 (2013).

    Article  CAS  Google Scholar 

  59. Van Elsas, J. D. & Bailey, M. J. The ecology of transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42, 187–197 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Nakamura, Y., Itoh, T., Matsuda, H. & Gojobori, T. Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nature Genet. 36, 760–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Ulrich, L. E., Koonin, E. V. & Zhulin, I. B. One-component systems dominate signal transduction in prokaryotes. Trends Microbiol. 13, 52–56 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, M.-C. & Marx, C. J. Synchronous waves of failed soft sweeps in the laboratory: remarkably rampant clonal interference of alleles at a single locus. Genetics 193, 943–952 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Winter, C., Bouvier, T., Weinbauer, M. G. & Thingstad, T. F. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol. Mol. Biol. Rev. 74, 42–57 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Buckling, A. & Rainey, P. B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. Biol. Sci. 269, 931–936 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cuadros-Orellana, S. et al. Genomic plasticity in prokaryotes: the case of the square haloarchaeon. ISME J. 1, 235–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Schaffer, W. M. & Rosenzweig, M. L. Homage to the red queen. I. Coevolution of predators and their victims. Theor. Popul. Biol. 14, 135–157 (1978).

    Article  CAS  PubMed  Google Scholar 

  68. Archetti, M. & Scheuring, I. Coexistence of cooperation and defection in public goods games. Evolution 65, 1140–1148 (2011).

    Article  PubMed  Google Scholar 

  69. Damore, J. A. & Gore, J. Understanding microbial cooperation. J. Theor. Biol. 299, 31–41 (2012).

    Article  PubMed  Google Scholar 

  70. Winkelmann, G. Microbial siderophore-mediated transport. Biochem. Soc. Trans. 30, 691–696 (2003).

    Article  Google Scholar 

  71. Johnson, J. R., Moseley, S. L., Roberts, P. L. & Stamm, W. E. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect. Immun. 56, 405–412 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tanabe, T. et al. Identification and characterization of genes required for biosynthesis and transport of the siderophore vibrioferrin in Vibrio parahaemolyticus. J. Bacteriol. 185, 6938–6949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. West, S. A. & Buckling, A. Cooperation, virulence and siderophore production in bacterial parasites. Proc. Biol. Sci. 270, 37–44 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  74. D'Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Majewski, J. & Cohan, F. M. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153, 1525–1533 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koornhof, H. J., Keddy, K. & McGee, L. Clonal expansion of bacterial pathogens across the world. J. Travel Med. 8, 29–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Vos, M. & Velicer, G. J. Social conflict in centimeter- and global-scale populations of the bacterium Myxococcus xanthus. Curr. Biol. 19, 1763–1767 (2009). This study shows that genotypes of Myxococcus xanthus engage in social interactions that depend on fine-scale population structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O'Connor, K. A. & Zusman, D. R. Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J. Bacteriol. 173, 3318–3333 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stefanic, P. et al. The quorum sensing diversity within and between ecotypes of Bacillus subtilis. Environ. Microbiol. 14, 1378–1389 (2012). This study shows that signalling is more often successful within populations than between populations of Bacillus subtilis.

    Article  CAS  PubMed  Google Scholar 

  81. Tran, L.-S. P., Nagai, T. & Itoh, Y. Divergent structure of the ComQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol. Microbiol. 37, 1159–1171 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Hawlena, H., Bashey, F. & Lively, C. M. Bacteriocin-mediated interactions within and between coexisting species. Ecol. Evol. 2, 2521–2526 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Riley, M. A. & Wertz, J. E. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84, 357–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Preheim, S. P. et al. Metapopulation structure of Vibrionaceae among coastal marine invertebrates. Environ. Microbiol. 13, 265–275 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Pérez-Gutiérrez, R.-A. et al. Antagonism influences assembly of a Bacillus guild in a local community and is depicted as a food-chain network. ISME J. 7, 487–497 (2013).

    Article  PubMed  CAS  Google Scholar 

  86. Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036–00012 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Doolittle, W. F. & Papke, R. T. Genomics and the bacterial species problem. Genome Biol. 7, 116 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hanage, W. P., Spratt, B. G., Turner, K. M. E. & Fraser, C. Modelling bacterial speciation. Phil. Trans. R. Soc. 361, 2039–2044 (2006).

    Article  Google Scholar 

  89. Ivars-Martinez, E. et al. Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J. 2, 1194–1212 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Croucher, N. J. et al. Rapid pneumococcal evolution in response to clinical interventions. Science 331, 430–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kurland, C. G., Canback, B. & Berg, O. G. Horizontal gene transfer: a critical view. Proc. Natl Acad. Sci. USA 100, 9658–9662 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Majewski, J. & Cohan, F. M. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics 152, 1459–1474 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shapiro, B. J., David, L. A., Friedman, J. & Alm, E. J. Looking for Darwin's footprints in the microbial world. Trends Microbiol. 17, 196–204 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Hanage, W. P., Fraser, C. & Spratt, B. G. Fuzzy species among recombinogenic bacteria. BMC Biol. 3, 6 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Guttman, D. S. & Dykhuizen, D. E. Detecting selective sweeps in naturally occurring Escherichia coli. Genetics 138, 993–1003 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vos, M. & Didelot, X. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 3, 199–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nature Rev. Microbiol. 5, 782–791 (2007).

    Article  CAS  Google Scholar 

  98. Stocker, R. Marine microbes see a sea of gradients. Science 338, 628–633 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Burd, A. B. & Jackson, G. A. Particle aggregation. Ann. Rev. Mar. Sci. 1, 65–90 (2009).

    Article  PubMed  Google Scholar 

  100. Azam, F. & Long, R. A. Sea snow microcosms. Nature 414, 497–498 (2001).

    Article  CAS  Google Scholar 

  101. Simon, M., Grossart, H. P., Schweitzer, B. & Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28, 175–211 (2002).

    Article  Google Scholar 

  102. Grossart, H.-P., Kiørboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: growth and interactions. Appl. Environ. Microbiol. 69, 3500–3509 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nature Rev. Microbiol. 8, 317–327 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J. Friedman for valuable discussions. Funding for M.F.P was provided by US National Science Foundation grant DEB 0821391, US National Institute of Environmental Health Sciences grant P30-ES002109, the Moore Foundation and the Broad Institute's Scientific Planning and Allocation of Resources Committee (SPARC) programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Otto X. Cordero or Martin F. Polz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Populations

Groups or clusters of closely related organisms that occupy the same environment and exhibit population-specific gene flow. Although similar to the 'ecotype' concept, populations need only be separated by gene-flow barriers, whereas ecotypes are assumed to contain groups of individuals that have been optimized by selection to occupy a similar niche.

Population bottlenecks

Drastic reductions in the gene pool of a population caused by selective sweeps or demographic fluctuations (for example, few individuals being transmitted during infections).

Sympatry

The coexistence of populations in the same geographic area, such that any gene flow barriers are not caused by geographic isolation but by genetic or behavioural mechanisms.

Clonal sweeps

Reductions of genome-wide variation in clonal populations owing to an increase in the frequency of one genotype that carries an adaptive mutation.

Frequency-dependent selection

A type of selection in which the fitness of a phenotype depends on its frequency in the population.

Genetic linkage

The probability that genes are inherited together. When selection changes the frequency of one gene, it also changes the frequency of the linked genes in a process called hitchhiking.

Gene content

The collection of genes in a genome. At the population level, each gene can be multiallelic.

Flexible genome

The set of genes that are present in only a fraction of the members of a clade.

Core genome

The set of genes that are present in all members of a clade or population.

Niche complementation

The reduction in intraspecies competition among members of a population owing to differences in resource use and interspecies interactions or to ecological facilitation.

Conspecifics

Members of the same species or population.

Niche breadth

The range of environments and resources to which a population is adapted.

Evolvability

The evolutionary potential of a population; that is, the ability of the population to generate novel adaptive mutants.

Microcosms

Experimental assemblages of organisms that are designed to represent simplified models of biological communities.

Negative frequency-dependent selection

A type of frequency-dependent selection that favours rare phenotypes in a population.

Genomic islands

Localized regions in a genome at which horizontal gene transfer and gene loss occur at high rates, resulting in high gene-content diversity at these loci between close relatives.

Public goods

Secreted products that can be used by coexisting bacteria, including cheaters, which do not incur the metabolic cost of production.

Interference competition

A form of competition that involves direct antagonistic interactions between individuals.

Bacteriocins

Proteinaceous toxins produced by bacteria that kill or inhibit the growth of close relatives.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordero, O., Polz, M. Explaining microbial genomic diversity in light of evolutionary ecology. Nat Rev Microbiol 12, 263–273 (2014). https://doi.org/10.1038/nrmicro3218

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3218

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology