Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Transport of lipopolysaccharide across the cell envelope: the long road of discovery

Abstract

Intracellular lipid transport is poorly understood. Genetic studies to identify lipid-transport factors are complicated by the essentiality of many lipids, whereas biochemical and cell biology approaches aiming to determine localization and mechanisms of lipid transport are often challenged by the lack of adequate technology. Here, we review the epic history of how different approaches, technological advances and ingenuity contributed to the recent discovery of a multi-protein pathway that transports lipopolysaccharide across the envelope of Gram-negative bacteria.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Escherichia coli LPS.
Figure 2: Electron micrograph of Veillonella illustrating the ultrastructure of the Gram-negative cell envelope.
Figure 3: Structure of the Gram-negative cell envelope.
Figure 4: Current models for LPS transport across the cell envelope.

References

  1. Gram, H. C. J. Über die isolirte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschr. Med. 2, 185–189 (1884).

    Google Scholar 

  2. Beveridge, T. J. & Davies, J. A. Cellular responses of Bacillus subtilis and Escherichia coli to the Gram stain. J. Bacteriol. 156, 846–858 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Davies, J. A., Anderson, G. K., Beveridge, T. J. & Clark, H. C. Chemical mechanism of the Gram stain and synthesis of a new electron-opaque marker for electron microscopy which replaces the iodine mordant of the stain. J. Bacteriol. 156, 837–845 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Miller, S. I., Ernst, R. K. & Bader, M. W. LPS, TLR4 and infectious disease diversity. Nature Rev. Microbiol. 3, 36–46 (2005).

    Article  CAS  Google Scholar 

  5. Muhlradt, P. F. & Golecki, J. R. Asymmetrical distribution and artifactual reorientation of lipopolysaccharide in the outer membrane bilayer of Salmonella typhimurium. Eur. J. Biochem. 51, 343–352 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Kamio, Y. & Nikaido, H. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. Biochemistry 15, 2561–2570 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Delcour, A. H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta (2008).

  9. Qureshi, N., Takayama, K., Heller, D. & Fenselau, C. Position of ester groups in the lipid A backbone of lipopolysaccharides obtained from Salmonella typhimurium. J. Biol. Chem. 258, 12947–12951 (1983).

    CAS  PubMed  Google Scholar 

  10. Strain, S. M,. Fesik, S. W. & Armitage, I. M. Structure and metal-binding properties of lipopolysaccharides from heptoseless mutants of Escherichia coli studied by 13C and 31P nuclear magnetic resonance. J. Biol. Chem. 258, 13466–13477 (1983).

    CAS  PubMed  Google Scholar 

  11. Strain, S. M., Fesik, S. W. & Armitage, I. M. Characterization of lipopolysaccharide from a heptoseless mutant of Escherichia coli by carbon 13 nuclear magnetic resonance. J. Biol. Chem. 258, 2906–2910 (1983).

    CAS  PubMed  Google Scholar 

  12. Takayama, K., Qureshi, N. & Mascagni, P. Complete structure of lipid A obtained from the lipopolysaccharides of the heptoseless mutant of Salmonella typhimurium. J. Biol. Chem. 258, 12801–12803 (1983).

    CAS  PubMed  Google Scholar 

  13. Glauert, A. M. & Thornley, M. J. The topography of the bacterial cell wall. Annu. Rev. Microbiol. 23, 159–198 (1969).

    Article  CAS  PubMed  Google Scholar 

  14. Kellenberger, E. & Ryter, A. Cell wall and cytoplasmic membrane of Escherichia coli. J. Biophys. Biochem. Cytol. 4, 323–326 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bladen, H. A. & Mergenhagen, S. E. Ultrastructure of Veillonella and morphological correlation of an outer membrane with particles associated with endotoxic activity. J. Bacteriol. 88, 1482–1492 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Murray, R. G. On the cell wall structure of Spirillum serpens. Can. J. Microbiol. 9, 381–392 (1963).

    Article  CAS  Google Scholar 

  17. Nikaido, H. in The periplasm (ed. Ehrmann, M.) (ASM Press, Washington, DC, 2007).

    Google Scholar 

  18. Osborn, M. J., Gander, J. E., Parisi, E. & Carson, J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J. Biol. Chem. 247, 3962–3972 (1972).

    CAS  PubMed  Google Scholar 

  19. Heppel, L. A. Selective release of enzymes from bacteria. Science 156, 1451–1455 (1967).

    Article  CAS  PubMed  Google Scholar 

  20. Mullineaux, C. W., Nenninger, A., Ray, N. & Robinson, C. Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J. Bacteriol. 188, 3442–3448 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miura, T. & Mizushima, S. Separation by density gradient centrifugation of two types of membranes from spheroplast membrane of Escherichia coli K12. Biochim. Biophys. Acta 150, 159–161 (1968).

    Article  CAS  PubMed  Google Scholar 

  22. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Macgregor, D. R. & Elliker, P. R. A comparison of some properties of strains of Pseudomonas aeruginosa sensitive and resistant to quaternary ammonium compounds. Can. J. Microbiol. 4, 499–503 (1958).

    Article  CAS  PubMed  Google Scholar 

  24. Leive, L. A Nonspecific increase in permeability in Escherichia coli produced by EDTA. Proc. Natl Acad. Sci. USA 53, 745–750 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leive, L. Actinomycin sensitivity in Escherichia coli produced by EDTA. Biochem. Biophys. Res. Commun. 18, 13–17 (1965).

    Article  CAS  PubMed  Google Scholar 

  26. Leive, L. Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem. Biophys. Res. Commun. 21, 290–296 (1965).

    Article  CAS  PubMed  Google Scholar 

  27. Leive, L. The barrier function of the Gram-negative envelope. Ann. NY Acad. Sci. 235, 109–129 (1974).

    Article  CAS  PubMed  Google Scholar 

  28. Tamaki, S., Sato, T. & Matsuhashi, M. Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K-12. J. Bacteriol. 105, 968–975 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Osborn, M. J., Gander, J. E. & Parisi, E. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Site of synthesis of lipopolysaccharide. J. Biol. Chem. 247, 3973–3986 (1972).

    CAS  PubMed  Google Scholar 

  30. Liu, D. & Reeves, P. R. Escherichia coli K12 regains its O antigen. Microbiology 140, 49–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Rothfield, L. & Pearlman-Kothencz, M. Synthesis and assembly of bacterial membrane components. A lipopolysaccharide-phospholipid-protein complex excreted by living bacteria. J. Mol. Biol. 44, 477–492 (1969).

    Article  CAS  PubMed  Google Scholar 

  32. Ward, A., Reyes, C. L., Yu, J., Roth, C. B. & Chang, G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc. Natl Acad. Sci. USA 104, 19005–19010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karow, M. & Georgopoulos, C. The essential Escherichia coli msbA gene, a multicopy suppressor of null mutations in the htrB gene, is related to the universally conserved family of ATP-dependent translocators. Mol. Microbiol. 7, 69–79 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Clementz, T., Bednarski, J. J. & Raetz, C. R. Function of the htrB high temperature requirement gene of Escherchia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J. Biol. Chem. 271, 12095–12102 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Polissi, A. & Georgopoulos, C. Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter. Mol. Microbiol. 20, 1221–1233 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, Z., White, K. A., Polissi, A., Georgopoulos, C. & Raetz, C. R. Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J. Biol. Chem. 273, 12466–12475 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Raetz, C. R, . Reynolds, C. M, . Trent, M. S. & Bishop, R. E. Lipid A modification systems in Gram-negative bacteria. Annu. Rev. Biochem. 76, 295–329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Doerrler, W. T, . Gibbons, H. S. & Raetz, C. R. MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J. Biol. Chem. 279, 45102–45109 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, H., Hsu, F. F., Turk, J. & Groisman, E. A. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J. Bacteriol. 186, 4124–4133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trent, M. S. et al. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J. Biol. Chem. 276, 43132–43144 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Trent, M. S., Ribeiro, A. A., Lin, S., Cotter, R. J. & Raetz, C. R. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J. Biol. Chem. 276, 43122–43131 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Doerrler, W. T. & Raetz, C. R. ATPase activity of the MsbA lipid flippase of Escherichia coli. J. Biol. Chem. 277, 36697–36705 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Eckford, P. D. & Sharom, F. J. Functional characterization of Escherichia coli MsbA: interaction with nucleotides and substrates. J. Biol. Chem. 283, 12840–12850 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Siarheyeva, A. & Sharom, F. J. The ABC transporter MsbA interacts with lipid A and amphipathic drugs at different sites. Biochem. J. (2009).

  45. Sampson, B. A., Misra, R. & Benson, S. A. Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 122, 491–501 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bos, M. P, . Robert, V. & Tommassen, J. Biogenesis of the Gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 61, 191–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Missiakas, D. & Raina, S. Characterization of the Escherichia coli sigma E regulon. J. Biol. Chem. 276, 20866–20875 (2001).

    Article  PubMed  Google Scholar 

  48. MacRitchie, D. M., Buelow, D. R., Price, N. L. & Raivio, T. L. Two-component signaling and Gram negative envelope stress response systems. Adv. Exp. Med. Biol. 631, 80–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Braun, M. & Silhavy, T. J. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol. Microbiol. 45, 1289–1302 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Bos, M. P., Tefsen, B., Geurtsen, J. & Tommassen, J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc. Natl Acad. Sci. USA 101, 9417–9422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Steeghs, L. et al. Meningitis bacterium is viable without endotoxin. Nature 392, 449–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Chiu, H. C., Lin, T. L. & Wang, J. T. Identification and characterization of an organic solvent tolerance gene in Helicobacter pylori. Helicobacter 12, 74–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Wu, T. et al. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc. Natl Acad. Sci. USA 103, 11754–11759 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bishop, R. E. et al. Transfer of palmitate from phospholipids to lipid A in outer membranes of Gram-negative bacteria. EMBO J. 19, 5071–5080 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Serina, S. et al. Scanning the Escherichia coli chromosome by random transposon mutagenesis and multiple phenotypic screening. Res. Microbiol. 155, 692–701 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Sperandeo, P., Pozzi, C., Deho, G. & Polissi, A. Non-essential KDO biosynthesis and new essential cell envelope biogenesis genes in the Escherichia coli yrbG-yhbG locus. Res. Microbiol. 157, 547–558 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Sperandeo, P. et al. Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J. Bacteriol. 189, 244–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Stenberg, F. et al. Protein complexes of the Escherichia coli cell envelope. J. Biol. Chem. 280, 34409–34419 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Sperandeo, P. et al. Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J. Bacteriol. 190, 4460–4469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Linton, K. J. & Higgins, C. F. Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch. 453, 555–567 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Ruiz, N., Gronenberg, L. S., Kahne, D. & Silhavy, T. J. Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli. Proc. Natl Acad. Sci. USA 105, 5537–5542 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reynolds, C. M. & Raetz, C. R. Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant. Proc. Natl Acad. Sci. USA 105, 13823–13828 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tokuda, H. & Matsuyama, S. Sorting of lipoproteins to the outer membrane in E. coli. Biochim. Biophys. Acta 1694, IN1–IN9 (2004).

    Article  PubMed  Google Scholar 

  64. Tran, A. X., Trent, M. S. & Whitfield, C. The LptA protein of Escherichia coli is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway. J. Biol. Chem. 283, 20342–20349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tefsen, B., Geurtsen, J., Beckers, F., Tommassen, J. & de Cock, H. Lipopolysaccharide transport to the bacterial outer membrane in spheroplasts. J. Biol. Chem. 280, 4504–4509 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Suits, M. D., Sperandeo, P., Deho, G., Polissi, A. & Jia, Z. Novel structure of the conserved Gram-negative lipopolysaccharide transport protein A and mutagenesis analysis. J. Mol. Biol. 380, 476–488 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Trent, M. S., Stead, C. M., Tran, A. X. & Hankins, J. V. Diversity of endotoxin and its impact on pathogenesis. J. Endotoxin. Res. 12, 205–223 (2006).

    CAS  PubMed  Google Scholar 

  68. Meredith, T. C. et al. Modification of lipopolysaccharide with colanic acid (M-antigen) repeats in Escherichia coli. J. Biol. Chem. 282, 7790–7798 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Nishijima, M. & Raetz, C. R. Characterization of two membrane-associated glycolipids from an Escherichia coli mutant deficient in phosphatidylglycerol. J. Biol. Chem. 256, 10690–10696 (1981).

    CAS  PubMed  Google Scholar 

  70. Takayama, K. et al. Fatty acyl derivatives of glucosamine 1-phosphate in Escherichia coli and their relation to lipid A. Complete structure of A diacyl GlcN-1-P found in a phosphatidylglycerol-deficient mutant. J. Biol. Chem. 258, 7379–7385 (1983).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of General Medical Sciences Grants GM34821 (to T.J.S.) and GM66174 (to D.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Silhavy.

Related links

Related links

FURTHER INFORMATION

Thomas J. Silhavy's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, N., Kahne, D. & Silhavy, T. Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat Rev Microbiol 7, 677–683 (2009). https://doi.org/10.1038/nrmicro2184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing