Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amyloids — a functional coat for microorganisms

Key Points

  • Functional amyloids have been shown to be present on the surfaces of bacteria and fungi. The proteins forming these amyloids are not related.

  • Amyloids present on the cell surface of microorganisms are crucial to aerial growth and enable efficient spore dispersal.

  • Microbial amyloids are involved in microbial attachment and invasion of biotic and abiotic substrates.

  • Amyloids present on the cell surfaces of Escherichia coli and Salmonella spp. interact with fibronectin, thereby enabling invasion of host cells.

  • Amyloids of E. coli and Salmonella spp. bind factor XII and tPA, which could provide the pathogen with host-derived proteolytic activity. This may contribute to microbial invasion.

  • Amyloids present on the microbial cell surface might contribute to immune response evasion.

Abstract

Amyloids are filamentous protein structures 10 nm wide and 0.1–10 μm long that share a structural motif, the cross-β structure. These fibrils are usually associated with degenerative diseases in mammals. However, recent research has shown that these proteins are also expressed on bacterial and fungal cell surfaces. Microbial amyloids are important in mediating mechanical invasion of abiotic and biotic substrates. In animal hosts, evidence indicates that these protein structures also contribute to colonization by activating host proteases that are involved in haemostasis, inflammation and remodelling of the extracellular matrix. Activation of proteases by amyloids is also implicated in modulating blood coagulation, resulting in potentially life-threatening complications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amyloid fibrils cover surfaces of microorganisms.
Figure 2: Formation of amyloid structures allows streptomycetes and filamentous fungi to invade the air.
Figure 3: Consequences of the interaction between bacterial surface amyloid and the contact and fibrinolytic systems.

Similar content being viewed by others

References

  1. Kelly, J. W. & Balch, W. E. Amyloid as a natural product. J. Cell. Biol. 161, 461–462 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wösten, H. A. B. & de Vocht, M. L. Hydrophobins, the fungal coat unravelled. Biochim. Biophys. Acta. 1469, 79–86 (2000). This overview focuses on the structural changes accompanying assembly of hydrophobins, and describes how this class of fungal proteins forms functional amyloids.

    Article  PubMed  Google Scholar 

  3. Claessen, D. et al. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 17, 1714–1726 (2003). Self-assembly of chaplins results in an amphipathic membrane that mediates escape of hyphae into the air as well as surface hydrophobicity of aerial structures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Claessen, D. et al. The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol. Microbiol. 53, 433–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Elliot, M. A. et al. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 17, 1727–1740 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Talbot, N. J. Aerial morphogenesis: enter the chaplins. Curr. Biol. 13, R696–R698 (2003). This review connects the functions of hydrophobins and chaplins in filamentous bacteria and fungi.

    Article  CAS  PubMed  Google Scholar 

  7. Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002). The first description of how prokaryotes produce functional amyloids, and elaborates on the assembly machinery that is required for the formation of these fibrils at the cell surface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wösten, H. A. B. Hydrophobins: multipurpose proteins. Annu. Rev. Microbiol. 55, 625–646 (2001).

    Article  PubMed  Google Scholar 

  9. Wösten, H. A. B. et al. How a fungus escapes the water to grow into the air. Curr. Biol. 9, 85–88 (1999).

    Article  PubMed  Google Scholar 

  10. Wösten, H. A. B., Asgeirsdottir, S. A., Krook, J. H., Drenth, J. H. H. & Wessels, J. G. H. The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer. Eur. J. Cell Biol. 63, 122–129 (1994).

    PubMed  Google Scholar 

  11. Wösten, H. A. B., De Vries, O. M. H. & Wessels, J. G. H. Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell 5, 1567–1574 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lugones, L. G., Bosscher, J. S., Scholtmeyer, K., De Vries, O. M. H. & Wessels, J. G.H. An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies. Microbiology. 142, 1321–1329 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Lugones, L. G. et al. Hydrophobins line air channels in fruiting bodies of Schizophyllum commune and Agaricus bisporus. Mycol. Res. 103, 635–640 (1999).

    Article  CAS  Google Scholar 

  14. Beever, R. E. & Dempsey, G. P. Function of rodlets on the surface of fungal spores. Nature 272, 608–610 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Lauter, F. R., Russo, V. E. & Yanofsky, C. Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev. 6, 2373–2381 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Stringer, M. A., Dean, R. A., Sewall, T. C. & Timberlake, W. E. Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev. 5, 1161–1171 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Talbot, N. J. et al. MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8, 985–999 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thau, N. et al. rodletless mutants of Aspergillus fumigatus. Infect. Immun. 62, 4380–4388 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Talbot, N. J., Ebbole, D. J. & Hamer, J. E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5, 1575–1590 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wösten, H. A. B., Schuren, F. H. J. & Wessels, J. G. H. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J. 13, 5848–5854 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wösten, H. A. B., Ruardy, T. G., van der Mei, H. C., Busscher, H. J. & Wessels, J. G. H. Interfacial self-assembly of a Schizophyllum commune hydrophobin into an insoluble amphipathic membrane depends on surface hydrophobicity. Coll. Surf. B:Biointerf. 5, 189–195 (1995).

    Article  Google Scholar 

  22. St Leger, R. J., Staples, R. C. & Roberts, D. W. Cloning and regulatory analysis of starvation-stress gene, ssgA, encoding a hydrophobin-like protein from the entomopathogenic fungus, Metarhizium anisopliae. Gene. 120, 119–124 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Parta, M., Chang, Y., Rulong, S., Pinto-DaSilva, P. & Kwon-Chung, K. J. HYP1, a hydrophobin gene from Aspergillus fumigatus, complements the rodletless phenotype in Aspergillus nidulans. Infect. Immun. 62, 4389–4395 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Paris, S. et al. Conidial hydrophobins of Aspergillus fumigatus. Appl. Environ. Microbiol. 69, 1581–1588 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shibuya, K. et al. Histopathology of experimental invasive pulmonary aspergillosis in rats: pathological comparison of pulmonary lesions induced by specific virulent factor deficient mutants. Microb. Pathog. 27, 123–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Zogaj, X., Bokranz, W., Nimtz, M. & Romling, U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect. Immun. 71, 4151–4158 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doran, J. L. et al. DNA-based diagnostic tests for Salmonella species targeting agfA, the structural gene for thin, aggregative fimbriae. J. Clin. Microbiol. 31, 2263–2273 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakellaris, H., et al. Curli loci of Shigella. Infect. Immun. 68, 3780–3783 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Claessen, D. Structural proteins involved in morphological differentiation of streptomycetes. PhD Thesis (Univ. of Groningen, The Netherlands, 2004).

  30. Hirvonen, M. R., Nevalainen, A., Makkonen, N., Mönkkönen, J. & Savolainen, K. Streptomyces spores from mouldy houses induce nitric oxide, TNF-α and IL-6 secretion from RAW264.7 macrophage cell line without causing subsequent cell death. Environ. Toxicol. Pharmacol. 3, 57–63 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Hirvonen, M. R., Ruotsalainen, M., Savolainen, K. & Nevalainen, A. Effect of viability of actinomycete spores on their ability to stimulate production of nitric oxide and reactive oxygen species in RAW264.7 macrophages. Toxicology 124, 105–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Jussila, J. et al. Systemic immunoresponses in mice after repeated exposure of lungs to spores of Streptomyces californicus. Clin. Diagn. Lab. Immunol. 10, 30–37 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fahal, A. H. Mycetoma: a thorn in the flesh. Trans. R. Soc. Trop. Med. Hyg. 98, 3–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Austin, J. W., Sanders, G., Kay, W. W. & Collinson, S. K. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol. Lett. 162, 295–301 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Vidal, O. et al. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J. Bacteriol. 180, 2442–2449 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. van der Velden, A. W. M., Baumler, A. J., Tsolis, R. M. & Heffron, F. Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infect. Immun. 66, 2803–2808 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sukupolvi, S. et al. Expression of thin aggregative fimbriae promotes interaction of Salmonella typhimurium SR-11 with mouse small intestinal epithelial cells. Infect. Immun. 65, 5320–5325 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dibb-Fuller, M. P., Allen-Vercoe, E., Thorns, C. J. & Woodward, M. J. Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology 145, 1023–1031 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Gophna, U. et al. Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect. Immun. 69, 2659–2665 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Serpell, L. C. et al. The protofilament substructure of amyloid fibrils. J. Mol. Biol. 300, 1033–1039 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Rochet, J. C. & Lansbury, P. T. Jr. Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struct. Biol. 10, 60–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Ben Nasr, A., Olsén, A., Sjöbring, U. M¨ler-Esterl, W. & Björck, L. Assembly of human contact phase proteins and release of bradykinin at the surface of curli-expressing Escherichia coli. Mol. Microbiol. 20, 927–935 (1996). The first example of activation of components of the intrinsic pathway of coagulation by curli and Tafi fibrils.

    Article  CAS  PubMed  Google Scholar 

  44. Olsén, A., Jonsson, A. & Normark, S. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338, 652–655 (1989).

    Article  PubMed  Google Scholar 

  45. Sjöbring, U., Pohl, G. & Olsén, A. Plasminogen, absorbed by Escherichia coli expressing curli or by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue-type plasminogen activator (t-PA). Mol. Microbiol. 14, 443–452 (1994). The first example of activation of components of the fibrinolytic system by curli and Tafi fibrils.

    Article  PubMed  Google Scholar 

  46. Gophna, U., Oelschlaeger, T. A., Hacker, J. & Ron, E. Z. Role of fibronectin in curli-mediated internalization. FEMS Microbiol. Lett. 212, 55–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Ozeri, V., Rosenshine, I., Mosher, D. F., Fassler, R. & Hanski, E. Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol. Microbiol. 30, 625–637 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Suenson, E., Lutzen, O. & Thorsen, S. Initial plasmin-degradation of fibrin as the basis of a positive feed-back mechanism in fibrinolysis. Eur. J. Biochem. 140, 513–522 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Kranenburg, O., et al. Tissue-type plasminogen activator is a multiligand cross-beta structure receptor. Curr. Biol. 12, 1833–1839 (2002). This article shows that the common feature of tPA-activating ligands is the amyloid cross-β structure.

    Article  CAS  PubMed  Google Scholar 

  50. Heller, M. V. et al. Early markers of blood coagulation and fibrinolysis activation in Argentine hemorrhagic fever. Thromb. Haemost. 73, 368–373 (1995).

    CAS  PubMed  Google Scholar 

  51. Lottenberg, R., Minning-Wenz, D. & Boyle, M. D. Capturing host plasmin(ogen): a common mechanism for invasive pathogens? Trends Microbiol. 2, 20–24 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Coleman, J. L. & Benach, J. L. Use of the plasminogen activation system by microorganisms. J. Lab. Clin. Med. 134, 567–576 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Lähteenmäki, K., Kuusela, P. & Korhonen, T. K. Bacterial plasminogen activators and receptors. FEMS Microbiol. Rev. 25, 531–552 (2001).

    Article  PubMed  Google Scholar 

  54. Goto, H., Wells, K., Takada, A. & Kawaoka, Y. Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza A virus. J. Virol. 75, 9297–9301 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Handley, M. A., Steigbigel, R. T. & Morrison, S. A. A role for urokinase-type plasminogen activator in human immunodeficiency virus type 1 infection of macrophages. J. Virol. 70, 4451–4456 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang, Y. H. et al. Antibodies against dengue virus E protein peptide bind to human plasminogen and inhibit plasmin activity. Clin. Exp. Immunol. 110, 35–40 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang, Y. H. et al. Tissue plasminogen activator induced by dengue virus infection of human endothelial cells. J. Med. Virol. 70, 610–616 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Monroy, V. & Ruiz, B. H. Participation of the Dengue virus in the fibrinolytic process. Virus Genes 21, 197–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Ben Nasr, A., Herwald, H., Müler-Esterl, W. & Björck, L. Human kininogens interact with M protein, a bacterial surface protein and virulence determinant. Biochem. J. 305, 173–180 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boyle, M. D. & Lottenberg, R. The interaction of pathogens with humans. Methods 21, 99–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Hack, C. E. & Colman, R. W. The role of the contact system in the pathogenesis of septic shock. Sepsis 3, 111–118 (1999). A recommended review on the role of the haemostatic system during infection.

    Article  Google Scholar 

  62. Hack, C. E. Derangements of coagulation and fibrinolysis in infectious diseases. Contrib. Microbiol. 10, 18–37 (2003). A recommended review of haemostasis during infection.

    Article  CAS  PubMed  Google Scholar 

  63. Herwald, H. et al. Activation of the contact-phase system on bacterial surfaces — a clue to serious complications in infectious diseases. Nature Med. 4, 298–302 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Jansen, P. M. et al. Inhibition of factor XII in septic baboons attenuates the activation of complement and fibrinolytic systems and reduces the release of interleukin-6 and neutrophil elastase. Blood 87, 2337–2344 (1996).

    CAS  PubMed  Google Scholar 

  65. Kalter, E. S., van Dijk, W. C., Timmerman, A., Verhoef, J. & Bouma, B. N. Activation of purified human plasma prekallikrein triggered by cell wall fractions of Escherichia coli and Staphylococcus aureus. J. Infect. Dis. 148, 682–691 (1983).

    Article  CAS  PubMed  Google Scholar 

  66. Korhonen, T. K. et al. Plasminogen receptors. Turning Salmonella and Escherichia coli into proteolytic organisms. Adv. Exp. Med. Biol. 412, 185–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Lähteenmäki, K., Kuusela, P. & Korhonen, T. K. Plasminogen activation in degradation and penetration of extracellular matrices and basement membranes by invasive bacteria. Methods 21, 125–132 (2000).

    Article  PubMed  Google Scholar 

  68. Levi, M., Keller, T. T., van Gorp, E. & ten Cate, H. Infection and inflammation and the coagulation system. Cardiovasc. Res. 60, 26–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Persson, K., Russell, W., Morgelin, M. & Herwald, H. The conversion of fibrinogen to fibrin at the surface of curliated Escherichia coli bacteria leads to the generation of proinflammatory fibrinopeptides. J. Biol. Chem. 278, 31884–31890 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Psuja, P. et al. Plasma markers of hypercoagulability in patients with serious infections and risk of septic shock. Clin. Appl. Thromb. Hemost. 8, 225–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Saetre, T., Lindgaard, A. K. & Lyberg, T. Systemic activation of coagulation and fibrinolysis in a porcine model of serogroup A streptococcal shock. Blood Coagul. Fibrinolysis 11, 433–438 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Holder, I. A. & Neely, A. N. Hageman factor dependent activation and its relationship to lethal Pseudomonas aeruginosa burn wound infections. Agents Actions Suppl. 38, 329–342 (1992).

    CAS  PubMed  Google Scholar 

  73. Darenfed, H., Grenier, D. & Mayrand, D. Acquisition of plasmin activity by Fusobacterium nucleatum subsp. nucleatum and potential contribution to tissue destruction during periodontitis. Infect. Immun. 67, 6439–6444 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fuchs, H., Wallich, R., Simon, M. M. & Kramer, M. D. The outer surface protein A of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor. Proc. Natl Acad. Sci. USA 91, 12594–12598 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Coleman, J. L. & Benach, J. L. The generation of enzymatically active plasmin on the surface of spirochetes. Methods 21, 133–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Coleman, J. L., Roemer, E. J. & Benach, J. L. Plasmin-coated Borrelia burgdorferi degrades soluble and insoluble components of the mammalian extracellular matrix. Infect. Immun. 67, 3929–3936 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Virkola, R. et al. Interaction of Haemophilus influenzae with the mammalian extracellular matrix. J. Infect. Dis. 173, 1137–1147 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. da Silva, C. M., de Abreau Viripo, L., Nishi, R. & Cristina, P. M. Binding of plasminogen to Pseudomonas aeruginosa results in formation of surface-associated plasmin and enhanced bacterial invasiveness. Microb. Pathog. 36, 59–66 (2004).

    Article  PubMed  CAS  Google Scholar 

  79. Korhonen, T. K. et al. Penetration of fimbriate enteric bacteria through basement membranes: a hypothesis. FEMS Microbiol. Lett. 79, 307–312 (1992).

    Article  Google Scholar 

  80. Lähteenmäki, K. et al. Bacterial plasminogen receptors: in vitro evidence for a role in degradation of the mammalian extracellular matrix. Infect. Immun. 63, 3659–3664 (1995).

    PubMed  PubMed Central  Google Scholar 

  81. Eberhard, T. H., Kronvall, G. & Ullberg, M. Surface bound plasmin promotes migration of Streptococcus pneumoniae through reconstituted basement membranes. Microb. Pathog. 26, 175–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Jong, A. Y. et al. Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J. Med. Microbiol. 52, 615–622 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Pancholi, V., Fontan, P. & Jin, H. Plasminogen-mediated group A streptococcal adherence to and pericellular invasion of human pharyngeal cells. Microb. Pathog. 35, 293–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Yavlovich, A., Higazi, A. A. & Rottem, S. Plasminogen binding and activation by Mycoplasma fermentans. Infect. Immun. 69, 1977–1982 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kukkonen, M. et al. Identification of two laminin-binding fimbriae, the type 1 fimbria of Salmonella enterica serovar Typhimurium and the G fimbria of Escherichia coli, as plasminogen receptors. Infect. Immun. 66, 4965–4970 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Urdaneta, L., Vanegas, G., Premoli, G. & Avilan, L. Plasminogen interaction and activation on Streptococcus mutans surface. Oral Microbiol. Immunol. 19, 257–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Bergmann, S. et al. Identification of a novel plasmin(ogen)-binding motif in surface displayed α-enolase of Streptococcus pneumoniae. Mol. Microbiol. 49, 411–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Kuusela, P., et al. Surface-associated activation of plasminogen on gram-positive bacteria. Effect of plasmin on the adherence of Staphylococcus aureus. Acta Ophthalmol. Suppl. 42–46 (1992).

  89. Parkkinen, J., Hacker, J. & Korhonen, T. K. Enhancement of tissue plasminogen activator-catalyzed plasminogen activation by Escherichia coli S fimbriae associated with neonatal septicaemia and meningitis. Thromb. Haemost. 65, 483–486 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Mattsson, E. et al. Staphylococcus aureus induces release of bradykinin in human plasma. Infect. Immun. 69, 3877–3882 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Herwald, H., Morgelin, M., Dahlback, B. & Bjorck, L. Interactions between surface proteins of Streptococcus pyogenes and coagulation factors modulate clotting of human plasma. J. Thromb. Haemost. 1, 284–291 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Ben Nasr, A. et al. Absorption of kininogen from human plasma by Streptococcus pyogenes is followed by the release of bradykinin. Biochem. J. 326, 657–660 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gordon, S. Pattern recognition receptors: doubling up for the innate immune response. Cell 111, 927–930 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Pepys, M. B. et al. Human serum amyloid P component is an invariant constituent of amyloid deposits and has a uniquely homogeneous glycostructure. Proc. Natl Acad. Sci. USA 91, 5602–5606 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Tennent, G. A., Lovat, L. B. & Pepys, M. B. Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc. Natl Acad. Sci. USA 92, 4299–4303 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Janciauskiene, S., Garcia, d. F., Carlemalm, E., Dahlback, B. & Eriksson, S. Inhibition of Alzheimer β-peptide fibril formation by serum amyloid P component. J. Biol. Chem. 270, 26041–26044 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Paresce, D. M., Ghosh, R. N. & Maxfield, F. R. Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor. Neuron 17, 553–565 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Husemann, J., Loike, J. D., Kodama, T. & Silverstein, S. C. Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar β-amyloid. J. Neuroimmunol. 114, 142–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Moore, K. J. et al. A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J. Biol. Chem. 277, 47373–47379 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Medeiros, L. A. et al. Fibrillar amyloid protein present in atheroma activates CD36 signal transduction. J. Biol. Chem. 279, 10643–10648 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. El Khoury, J. B. et al. CD36 mediates the innate host response to β-amyloid. J. Exp. Med. 197, 1657–1666 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moore, K. J. et al. A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J. Biol. Chem. 277, 47373–47379 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Yan, S. D. et al. RAGE-AB interactions in the pathophysiology of Alzheimer's disease. Restor. Neurol. Neurosci. 12, 167–173 (1998).

    CAS  PubMed  Google Scholar 

  104. Sousa, M. M., Yan, S. D., Stern, D. & Saraiva, M. J. Interaction of the receptor for advanced glycation end products (RAGE) with transthyretin triggers nuclear transcription factor κB (NF-κB) activation. Lab. Invest. 80, 1101–1110 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Deane, R., Wu, Z. & Zlokovic, B. V. RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid β-peptide clearance through transport across the blood–brain barrier. Stroke 35, 2628–2631 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Yan, S. D. et al. Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis. Nature Med. 6, 643–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Bickerstaff, M. C. et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nature Med. 5, 694–697 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Gillmore, J. D. et al. Autoimmunity and glomerulonephritis in mice with targeted deletion of the serum amyloid P component gene: SAP deficiency or strain combination? Immunology 112, 255–264 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Botto, M. et al. Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nature Med. 3, 855–859 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Hind, C. R., Collins, P. M., Baltz, M. L. & Pepys, M. B. Human serum amyloid P component, a circulating lectin with specificity for the cyclic 4,6-pyruvate acetal of galactose. Interactions with various bacteria. Biochem. J. 225, 107–111 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Noursadeghi, M. et al. Role of serum amyloid P component in bacterial infection: protection of the host or protection of the pathogen. Proc. Natl Acad. Sci. USA 97, 14584–14589 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Peiser, L. et al. The class A macrophage scavenger receptor is a major pattern recognition receptor for Neisseria meningitidis which is independent of lipopolysaccharide and not required for secretory responses. Infect. Immun. 70, 5346–5354 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Krieger, M. & Stern, D. M. Series introduction: multiligand receptors and human disease. J. Clin. Invest. 108, 645–647 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Santiago-Garcia, J., Mas-Oliva, J., Innerarity, T. L. & Pitas, R. E. Secreted forms of the amyloid-beta precursor protein are ligands for the class A scavenger receptor. J. Biol. Chem. 276, 30655–30661 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Kim, S. et al. Lipid raft microdomains mediate class A scavenger receptor-dependent infection of Brucella abortus. Microb. Pathog. 37, 11–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Sukupolvi, S., Edelstein, A., Rhen, M., Normark, S. J. & Pfeifer, J. D. Development of a murine model of chronic Salmonella infection. Infect. Immun. 65, 838–842 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sukupolvi, S. et al. Expression of thin aggregative fimbriae promotes interaction of Salmonella typhimurium SR-11 with mouse small intestinal epithelial cells. Infect. Immun. 65, 5320–5325 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sakellaris, H. et al. Curli loci of Shigella. Infect Immun. 68, 3780–3783 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Berson, J. F. et al. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell Biol. 161, 521–533 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huff, M. E., Balch, W. E. & Kelly, J. W. Pathological and functional amyloid formation orchestrated by the secretory pathway. Curr. Opin. Struct. Biol. 13, 674–682 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Wessels, J. G. H. Hydrophobins: proteins that change the nature of the fungal surface. Adv. Microb. Physiol. 38, 1–45 (1997).

    CAS  PubMed  Google Scholar 

  123. De Vries, O. M. H., Fekkes, M. P., Wösten, H. A. B. & Wessels, J. G. H. Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi. Arch. Microbiol. 159, 330–335 (1993).

    Article  CAS  Google Scholar 

  124. Yaguchi, M. et al. in Dutch Elm Disease Research, Cellular and Molecular Approaches (eds Sticklen, M. & Sherald, J.) 152–170 (Springer, New York, 1993).

    Book  Google Scholar 

  125. Hakanpaä, J. et al. Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J. Biol. Chem. 279, 534–539 (2004).

    Article  PubMed  CAS  Google Scholar 

  126. de Vocht, M. L. et al. Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys. J. 74, 2059–2068 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Butko, P. et al. Spectroscopic evidence for amyloid-like interfacial self-assembly of hydrophobin Sc3. Biochem. Biophys. Res. Commun. 280, 212–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. de Vocht, M. L. et al. Structural and functional role of the disulfide bridges in the hydrophobin SC3. J. Biol. Chem. 275, 28428–28432 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, X., de Vocht, M. L., de Jonge, J., Poolman, B. & Robillard, G. T. Structural changes and molecular interactions of hydrophobin SC3 in solution and on a hydrophobic surface. Protein Sci. 11, 1172–1181 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. de Vocht, M. L. et al. Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates. Protein Sci. 11, 1199–1205 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wessels, J. G. H. Developmental regulation of fungal cell wall formation. Annu. Rev Phytopathol. 32, 413–437 (1994).

    Article  CAS  Google Scholar 

  132. Torkkeli, M., Serimaa, R., Ikkala, O. & Linder, M. Aggregation and self-assembly of hydrophobins from Trichoderma reesei: low-resolution structural models. Biophys. J. 83, 2240–2247 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, X. et al. Probing the self-assembly and the accompanying structural changes of hydrophobin SC3 on a hydrophobic surface by mass spectrometry. Biophys. J. 87, 1919–1928 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mazmanian, S. K., Liu, G., Ton-That, H. & Schneewind, O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285, 760–763 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Mazmanian, S. K., Ton-That, H. & Schneewind, O. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol. Microbiol. 40, 1049–1057 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Giacomelli, C. E. & Norde, W. Influence of hydrophobic Teflon particles on the structure of amyloid β-peptide. Biomacromolecules 4, 1719–1726 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Olsén, A., Arnqvist, A., Hammar, M., Sukupolvi, S. & Normark, S. The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol. Microbiol. 7, 523–536 (1993).

    Article  PubMed  Google Scholar 

  138. Hammar, M., Arnqvist, A., Bian, Z., Olsen, A. & Normark, S. Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol. Microbiol 18, 661–670 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Bian, Z. & Normark, S. Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J. 16, 5827–5836 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Loferer, H., Hammar, M. & Normark, S. Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol. Microbiol. 26, 11–23 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Collinson, S. K., Emödy, L., Muller, K. H., Trust, T. J. & Kay, W. W. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J. Bacteriol. 173, 4773–4781 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Collinson, S. K., Clouthier, S. C., Doran, J. L., Banser, P. A. & Kay, W. W. Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J. Bacteriol. 178, 662–667 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Römling, U., Bian, Z., Hammar, M., Sierralta, W. D. & Normark, S. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180, 722–731 (1998).

    PubMed  PubMed Central  Google Scholar 

  144. White, A. P., Gibson, D. L., Collinson, S. K., Banser, P. A. & Kay, W. W. Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar Enteritidis. J. Bacteriol. 185, 5398–5407 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Silverberg, M., Reddigari, S. R. & Kaplan, A. P. in Blood: Principles and Practice of Hematology (eds Handin, R. I., Lux, S. E. & Stossel, T. P.) 1127–1150 (Lippincott, Philadelphia, 1995).

    Google Scholar 

  146. Kaplan, A. P., Joseph, K. & Silverberg, M. Pathways for bradykinin formation and inflammatory disease. J. Allergy Clin. Immunol. 109, 195–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Eijnden-Schrauwen, Y., Kooistra, T., de Vries, R. E. & Emeis, J. J. Studies on the acute release of tissue-type plasminogen activator from human endothelial cells in vitro and in rats in vivo: evidence for a dynamic storage pool. Blood 85, 3510–3517 (1995).

    PubMed  Google Scholar 

  148. Brown, N. J., Gainer, J. V., Stein, C. M. & Vaughan, D. E. Bradykinin stimulates tissue plasminogen activator release in human vasculature. Hypertension 33, 1431–1435 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Henderson, L. M., Figueroa, C. D., Muller-Esterl, W. & Bhoola, K. D. Assembly of contact-phase factors on the surface of the human neutrophil membrane. Blood 84, 474–482 (1994).

    CAS  PubMed  Google Scholar 

  150. Caliezi, C. et al. C1-Esterase inhibitor: an anti-inflammatory agent and its potential use in the treatment of diseases other than hereditary angioedema. Pharmacol. Rev. 52, 91–112 (2000).

    CAS  PubMed  Google Scholar 

  151. Vassalli, J. D., Sappino, A. P. & Belin, D. The plasminogen activator/plasmin system. J. Clin. Invest. 88, 1067–1072 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Matrisian, L. M. The matrix-degrading metalloproteinases. Bioessays 14, 455–463 (1992).

    Article  CAS  PubMed  Google Scholar 

  153. Lyons, R. M., Gentry, L. E., Purchio, A. F. & Moses, H. L. Mechanism of activation of latent recombinant transforming growth factor β1 by plasmin. J. Cell Biol. 110, 1361–1367 (1990).

    Article  CAS  PubMed  Google Scholar 

  154. Syrovets, T. & Simmet, T. Novel aspects and new roles for the serine protease plasmin. Cell. Mol. Life Sci. 61, 873–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Wösten, H. A. B., Richter, M. & Willey, J. M. Structural proteins involved in emergence of microbial aerial hyphae. Fungal Genet. Biol. 27, 153–160 (1999).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Our research on amyloids is supported by The Netherlands Thrombosis Foundation, the International Society of Alzheimer's Research (ISAO), the Biopartner Programme of the Dutch Science Foundation (to M.F.B.G.G.), and the Dutch Programme EET (Economy, Ecology and Technology), a joint initiative of the Ministries of Economic Affairs, Education, Culture and Sciences and of Housing, Spatial Planning and the Environment (EETK01031) (to L.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han A. B. Wösten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Magnaporthe grisea

Staphylococcus aureus

Streptomyces coelicolor

Streptococcus pyogenes

SwissProt

AgfA

CsgA

MPG1

RodA

SC3

tPA

Glossary

HYDROPHOBIN

Fungal secreted protein that self-assembles at hydrophilic–hydrophobic interfaces into an amphipathic membrane. In the case of class I hydrophobins this membrane is very stable and consists of amyloid fibrils.

CHAPLINS

Proteins secreted by streptomycetes that self-assemble into an amphipathic membrane at a hydrophilic–hydrophobic interface. Like the membrane of hydrophobins, the chaplin membrane consists of amyloid fibrils and is very stable.

CURLI

Amyloid fibrils found at surfaces of E. coli, mainly consisting of the CsgA protein.

TAFI

Curli fibrils found on Salmonella cell surfaces.

SAPROPHYTIC

Organisms that derive their nutrients from dead organic material.

APPRESSORIUM

A pre-penetration external structure formed by the terminal swelling of a fungal germ tube.

MYCELIUM

A network of fungal or streptomycete hyphae.

M PROTEINS

A family of proteins expressed by Streptococcus pyogenes that mediate interaction with human plasma proteins and promote bacterial adherence to epithelial cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebbink, M., Claessen, D., Bouma, B. et al. Amyloids — a functional coat for microorganisms. Nat Rev Microbiol 3, 333–341 (2005). https://doi.org/10.1038/nrmicro1127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing