Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

A blueprint for kinetochores — new insights into the molecular mechanics of cell division

Abstract

Kinetochores are large proteinaceous complexes that physically link centromeric DNA to the plus ends of spindle microtubules. Stable kinetochore–microtubule attachments are a prerequisite for the accurate and efficient distribution of genetic material over multiple generations. In the past decade, concerted research has resulted in the identification of the individual kinetochore building blocks, the characterization of critical microtubule-interacting components, such as the NDC80 complex, and the development of an approximate model of the architecture of this sophisticated biological machine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General and budding yeast kinetochore organization.
Figure 2: Possible configurations of Ndc80 and Dam1 complexes at the yeast kinetochore.

Similar content being viewed by others

References

  1. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore–microtubule interface. Nature Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  Google Scholar 

  2. Joglekar, A. P. et al. Molecular architecture of the kinetochore–microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol. 181, 587–594 (2008).

    Article  CAS  Google Scholar 

  3. Furuyama, S. & Biggins, S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl Acad. Sci. USA 104, 14706–14711 (2007).

    Article  CAS  Google Scholar 

  4. Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511–2531 (2009).

    Article  CAS  Google Scholar 

  5. Powers, A. F. et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865–875 (2009).

    Article  CAS  Google Scholar 

  6. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  Google Scholar 

  7. DeLuca, J. G. et al. Hec1 and Nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell 16, 519–531 (2005).

    Article  CAS  Google Scholar 

  8. Desai, A. et al. KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev. 17, 2421–2435 (2003).

    Article  CAS  Google Scholar 

  9. Wigge, P. A. & Kilmartin, J. V. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152, 349–360 (2001).

    Article  CAS  Google Scholar 

  10. Cheeseman, I. M., Enquist-Newman, M., Muller-Reichert, T., Drubin, D. G. & Barnes, G. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J. Cell Biol. 152, 197–212 (2001).

    Article  CAS  Google Scholar 

  11. Janke, C., Ortiz, J., Tanaka, T. U., Lechner, J. & Schiebel, E. Four new subunits of the Dam1–Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J. 21, 181–193 (2002).

    Article  CAS  Google Scholar 

  12. Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183–197 (2002).

    Article  CAS  Google Scholar 

  13. Gaitanos, T. N. et al. Stable kinetochore–microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J. 28, 1442–1452 (2009).

    Article  CAS  Google Scholar 

  14. Welburn, J. P. et al. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 16, 374–385 (2009).

    Article  CAS  Google Scholar 

  15. Lampson, M. A. & Cheeseman, I. M. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 21, 133–140 (2011).

    Article  CAS  Google Scholar 

  16. Liu, D., Vader, G., Vromans, M. J., Lampson, M. A. & Lens, S. M. Sensing chromosome bi-orientation by spatial separation of Aurora B kinase from kinetochore substrates. Science 323, 1350–1353 (2009).

    Article  CAS  Google Scholar 

  17. Ciferri, C. et al. Implications for kinetochore–microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133, 427–439 (2008).

    Article  CAS  Google Scholar 

  18. Wei, R. R., Al-Bassam, J. & Harrison, S. C. The Ndc80/HEC1 complex is a contact point for kinetochore–microtubule attachment. Nature Struct. Mol. Biol. 14, 54–59 (2007).

    Article  CAS  Google Scholar 

  19. Wei, R. R., Sorger, P. K. & Harrison, S. C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl Acad. Sci. USA 102, 5363–5367 (2005).

    Article  CAS  Google Scholar 

  20. Wan, X. et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672–684 (2009).

    Article  CAS  Google Scholar 

  21. Wang, H. W. et al. Architecture and flexibility of the yeast Ndc80 kinetochore complex. J. Mol. Biol. 383, 894–903 (2008).

    Article  CAS  Google Scholar 

  22. Maure, J. F. et al. The Ndc80 loop region facilitates formation of kinetochore attachment to the dynamic microtubule plus end. Curr. Biol. 21, 207–213 (2011).

    Article  CAS  Google Scholar 

  23. Hsu, K. S. & Toda, T. Ndc80 internal loop interacts with Dis1/TOG to ensure proper kinetochore–spindle attachment in fission yeast. Curr. Biol. 21, 214–220 (2011).

    Article  CAS  Google Scholar 

  24. Hornung, P. et al. Molecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex. J. Mol. Biol. 405, 548–559 (2011).

    Article  CAS  Google Scholar 

  25. Maskell, D. P., Hu, X. W. & Singleton, M. R. Molecular architecture and assembly of the yeast kinetochore MIND complex. J. Cell Biol. 190, 823–834 (2010).

    Article  CAS  Google Scholar 

  26. Petrovic, A. et al. The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J. Cell Biol. 190, 835–852 (2010).

    Article  CAS  Google Scholar 

  27. Cheeseman, I. M., Hori, T., Fukagawa, T. & Desai, A. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol. Biol. Cell 19, 587–594 (2008).

    Article  CAS  Google Scholar 

  28. Hori, T. et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135, 1039–1052 (2008).

    Article  CAS  Google Scholar 

  29. Przewloka, M. R. et al. CENP-C is a structural platform for kinetochore assembly. Curr. Biol. 21, 399–405 (2011).

    Article  CAS  Google Scholar 

  30. Screpanti, E. et al. Direct binding of CENP-C to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol. 21, 391–398 (2011).

    Article  CAS  Google Scholar 

  31. Kiyomitsu, T., Iwasaki, O., Obuse, C. & Yanagida, M. Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. J. Cell Biol. 188, 791–807 (2010).

    Article  CAS  Google Scholar 

  32. Hayashi, I. & Ikura, M. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J. Biol. Chem. 278, 36430–36434 (2003).

    Article  CAS  Google Scholar 

  33. Sundin, L. J., Guimaraes, G. J. & Deluca, J. G. The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis. Mol. Biol. Cell 22, 759–768 (2011).

    Article  CAS  Google Scholar 

  34. Tooley, J. G., Miller, S. A. & Stukenberg, P. T. The Ndc80 complex employs a tripartite attachment point to couple microtubule depolymerization to chromosome movement. Mol. Biol. Cell 22, 1217–1226 (2011).

    Article  CAS  Google Scholar 

  35. DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969–982 (2006).

    Article  CAS  Google Scholar 

  36. Guimaraes, G. J., Dong, Y., McEwen, B. F. & Deluca, J. G. Kinetochore–microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr. Biol. 18, 1778–1784 (2008).

    Article  CAS  Google Scholar 

  37. Wilson-Kubalek, E. M., Cheeseman, I. M., Yoshioka, C., Desai, A. & Milligan, R. A. Orientation and structure of the Ndc80 complex on the microtubule lattice. J. Cell Biol. 182, 1055–1061 (2008).

    Article  CAS  Google Scholar 

  38. Alushin, G. M. et al. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467, 805–810 (2010).

    Article  CAS  Google Scholar 

  39. Hill, T. L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl Acad. Sci. USA 82, 4404–4408 (1985).

    Article  CAS  Google Scholar 

  40. Kemmler, S. et al. Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling. EMBO J. 28, 1099–1110 (2009).

    Article  CAS  Google Scholar 

  41. Lampert, F., Hornung, P. & Westermann, S. The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J. Cell Biol. 189, 641–649 (2010).

    Article  CAS  Google Scholar 

  42. Lacefield, S., Lau, D. T. & Murray, A. W. Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast. Nature Cell Biol. 11, 1116–1120 (2009).

    Article  CAS  Google Scholar 

  43. Kiermaier, E., Woehrer, S., Peng, Y., Mechtler, K. & Westermann, S. A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast. Nature Cell Biol. 11, 1109–1115 (2009).

    Article  CAS  Google Scholar 

  44. Westermann, S. et al. Formation of a dynamic kinetochore–microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005).

    Article  CAS  Google Scholar 

  45. Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol. 12, 138–143 (2005).

    Article  CAS  Google Scholar 

  46. Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc. Natl Acad. Sci. USA 103, 9873–9878 (2006).

    Article  CAS  Google Scholar 

  47. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).

    Article  CAS  Google Scholar 

  48. Tien, J. F. et al. Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by Aurora B. J. Cell Biol. 189, 713–723 (2010).

    Article  CAS  Google Scholar 

  49. Akiyoshi, B. et al. Tension directly stabilizes reconstituted kinetochore–microtubule attachments. Nature 468, 576–579 (2010).

    Article  CAS  Google Scholar 

  50. Tanaka, K., Kitamura, E., Kitamura, Y. & Tanaka, T. U. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J. Cell Biol. 178, 269–281 (2007).

    Article  CAS  Google Scholar 

  51. Joglekar, A. P., Bouck, D. C., Molk, J. N., Bloom, K. S. & Salmon, E. D. Molecular architecture of a kinetochore–microtubule attachment site. Nature Cell Biol. 8, 581–585 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Westermann laboratory receives funding from the European Research Council (ERC) under the European Community's Seventh Framework Programme (S.W., FP7/2007-2013; ERC grant agreement number 203499) and from the Austrian Science Fund FWF (S.W., SFB F34-B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Westermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Stefan Westermann's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lampert, F., Westermann, S. A blueprint for kinetochores — new insights into the molecular mechanics of cell division. Nat Rev Mol Cell Biol 12, 407–412 (2011). https://doi.org/10.1038/nrm3133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing