Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Clathrin-mediated endocytosis before fluorescent proteins

Abstract

The recent technological advance of using fluorescent proteins to image endocytic protein traffic has resulted in a greater understanding of this dynamic process. However, most of the main concepts for how clathrin-mediated endocytosis functions were formulated long before intrinsically fluorescent proteins were available. These important conceptual breakthroughs came from the clever interpretation of simple observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sequence of events in the endocytosis of yolk proteins by coated pits of mosquito oocytes.
Figure 2: An early proposal for a mechanism of receptor-mediated endocytosis.
Figure 3: An early proposal for a sorting endosome.

References

  1. Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes Aegypti. L. J. Cell Biol. 20, 313–332 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lewis, W. H. Pinocytosis. Bull. Johns Hopkins Hospital 49, 17–23 (1931).

    Google Scholar 

  3. Palade, G. E. The endoplasmic reticulum. J. Biophys. Biochem. Cytol. 2, 85–98 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palade, G. E. Transport in quanta across the endothelium of blood capillaries. Anat. Rec. 136, 254 (1960).

    Google Scholar 

  5. Friend, D. S. & Farquhar, M. G. Functions of coated vesicles during protein absorption in the rat vas deferens. J. Cell Biol. 35, 357–376 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gray, E. G. & Willis, R. A. On synaptic vesicles, complex vesicles and dense projections. Brain Res. 24, 149–168 (1970).

    Article  CAS  PubMed  Google Scholar 

  7. Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanaseki, T. & Kadota, K. The 'vesicle in a basket'. A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J. Cell Biol. 42, 202–220 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderson, R. G., Goldstein, J. L. & Brown, M. S. A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature 270, 695–699 (1977).

    Article  CAS  PubMed  Google Scholar 

  10. Goldstein, J. L., Anderson, R. G. & Brown, M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279, 679–685 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Anderson, R. G., Brown, M. S. & Goldstein, J. L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 10, 351–364 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Maxfield, F. R., Schlessinger, J., Shechter, Y., Pastan, I. & Willingham, M. C. Collection of insulin, EGF and α2-macroglobulin in the same patches on the surface of cultured fibroblasts and common internalization. Cell 14, 805–810 (1978).

    Article  CAS  PubMed  Google Scholar 

  13. Carpentier, J. L., Fehlman, M., Freychet, P. & Orci, L. Receptor binding and internalization of biosynthetic human insulin in isolated rat hepatocytes. Mol. Cell. Endocrinol. 28, 543–550 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Helenius, A., Kartenbeck, J., Simons, K. & Fries, E. On the entry of Semliki forest virus into BHK-21 cells. J. Cell Biol. 84, 404–420 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geuze, H. J., Slot, J. W., Strous, G. J., Lodish, H. F. & Schwartz, A. L. Intracellular site of asialoglycoprotein receptor–ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell 32, 277–287 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Wall, D. A., Wilson, G. & Hubbard, A. L. The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes. Cell 21, 79–93 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. Stockert, R. J. et al. Endocytosis of asialoglycoprotein–enzyme conjugates by hepatocytes. Lab. Invest. 43, 556–563 (1980).

    CAS  PubMed  Google Scholar 

  18. Rome, L. H. Curling receptors. Trends Biochem. Sci. 10, 151 (1985).

    Article  Google Scholar 

  19. Dunn, K. W. & Maxfield, F. R. Delivery of ligands from sorting endosomes to late endosomes occurs by maturation of sorting endosomes. J. Cell Biol. 117, 301–310 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Dunn, K. W., McGraw, T. E. & Maxfield, F. R. Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J. Cell Biol. 109, 3303–3314 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84, 560–583 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. Pearse, B. M. Coated vesicles from pig brain: purification and biochemical characterization. J. Mol. Biol. 97, 93–98 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. Pearse, B. M. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl Acad. Sci. USA 73, 1255–1259 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crowther, R. A. & Pearse, B. M. Assembly and packing of clathrin into coats. J. Cell Biol. 91, 790–797 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Ungewickell, E. & Branton, D. Assembly units of clathrin coats. Nature 289, 420–422 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. Kirchhausen, T. & Harrison, S. C. Protein organization in clathrin trimers. Cell 23, 755–761 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Unanue, E. R., Ungewickell, E. & Branton, D. The binding of clathrin triskelions to membranes from coated vesicles. Cell 26, 439–446 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. Zaremba, S. & Keen, J. H. Assembly polypeptides from coated vesicles mediate reassembly of unique clathrin coats. J. Cell Biol. 97, 1339–1347 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Pearse, B. M. & Robinson, M. S. Purification and properties of 100-kd proteins from coated vesicles and their reconstitution with clathrin. EMBO J. 3, 1951–1957 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahle, S. & Ungewickell, E. Purification and properties of a new clathrin assembly protein. EMBO J. 5, 3143–3149 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vigers, G. P., Crowther, R. A. & Pearse, B. M. Location of the 100 kd–50 kd accessory proteins in clathrin coats. EMBO J. 5, 2079–2085 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirchhausen, T. et al. Clathrin heavy chain: molecular cloning and complete primary structure. Proc. Natl Acad. Sci. USA 84, 8805–8809 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thurieau, C. et al. Molecular cloning and complete amino acid sequence of AP50, an assembly protein associated with clathrin-coated vesicles. DNA 7, 663–669 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Robinson, M. S. Cloning of cDNAs encoding two related 100-kD coated vesicle proteins (α-adaptins). J. Cell Biol. 108, 833–842 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Davis, C. G., van Driel, I. R., Russell, D. W., Brown, M. S. & Goldstein, J. L. The low density lipoprotein receptor. Identification of amino acids in cytoplasmic domain required for rapid endocytosis. J. Biol. Chem. 262, 4075–4082 (1987).

    CAS  PubMed  Google Scholar 

  36. Chen, W. J., Goldstein, J. L. & Brown, M. S. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem. 265, 3116–3123 (1990).

    CAS  PubMed  Google Scholar 

  37. Jing, S. Q., Spencer, T., Miller, K., Hopkins, C. & Trowbridge, I. S. Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization. J. Cell Biol. 110, 283–294 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Johnson, K. F., Chan, W. & Kornfeld, S. Cation-dependent mannose 6-phosphate receptor contains two internalization signals in its cytoplasmic domain. Proc. Natl Acad. Sci. USA 87, 10010–10014 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Letourneur, F. & Klausner, R. D. A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 69, 1143–1157 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Ohno, H. et al. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269, 1872–1875 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Poodry, C. A., Hall, L. & Suzuki, D. T. Developmental properties of Shibire: a pleiotropic mutation affecting larval and adult locomotion and development. Dev. Biol. 32, 373–386 (1973).

    Article  CAS  PubMed  Google Scholar 

  42. Kosaka, T. & Ikeda, K. Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J. Neurobiol. 14, 207–225 (1983).

    Article  CAS  PubMed  Google Scholar 

  43. Kessell, I., Holst, B. D. & Roth, T. F. Membranous intermediates in endocytosis are labile, as shown in a temperature-sensitive mutant. Proc. Natl Acad. Sci. USA 86, 4968–4972 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koenig, J. H. & Ikeda, K. Transformational process of the endosomal compartment in nephrocytes of Drosophila melanogaster. Cell Tissue Res. 262, 233–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, M. S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol. 5, 133–147 (2004).

    Article  CAS  Google Scholar 

  48. Robinson, M. S. Adaptable adaptors for coated vesicles. Trends Cell Biol. 14, 167–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Sorkin, A. Cargo recognition during clathrin-mediated endocytosis: a team effort. Curr. Opin. Cell Biol. 16, 392–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, X. et al. Clathrin exchange during clathrin-mediated endocytosis. J. Cell Biol. 155, 291–300 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated-pit dynamics in living cells. Nature Cell Biol. 1, 1–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Rappoport, J. Z., Taha, B. W. & Simon, S. M. Movement of plasma-membrane-associated clathrin spots along the microtubule cytoskeleton. Traffic 4, 460–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biol. 4, 691–698 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Marsh, M. & McMahon, H. T. The structural era of endocytosis. Science 285, 215–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Barbieri, M. A., Ramkumar, T. P., Fernadez-Pol, S., Chen, P. I. & Stahl, P. D. Receptor tyrosine kinase signaling and trafficking paradigms revisited. Curr. Top. Microbiol. Immunol. 286, 1–20 (2004).

    CAS  PubMed  Google Scholar 

  58. Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Roth, M. G. Phosphoinositides in constitutive membrane traffic. Physiol. Rev. 84, 699–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Stahl, P. D. & Barbieri, M. A. Multivesicular bodies and multivesicular endosomes: the 'ins and outs' of endosomal traffic. Sci. STKE 2002, PE32 (2002).

    PubMed  Google Scholar 

  61. Marsh, M. & Thali, M. HIV's great escape. Nature Med. 9, 1262–1263 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Russell, D. W. et al. cDNA cloning of the bovine low density lipoprotein receptor: feedback regulation of a receptor mRNA. Proc. Natl Acad. Sci. USA 80, 7501–7505 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xie, X. S., Stone, D. K. & Racker, E. Activation and partial purification of the ATPase of clathrin-coated vesicles and reconstitution of the proton pump. J. Biol. Chem. 259, 11676–11678 (1984).

    CAS  PubMed  Google Scholar 

  64. Forgac, M. & Cantley, L. Characterization of the ATP-dependent proton pump of clathrin-coated vesicles. J. Biol. Chem. 259, 8101–8105 (1984).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

hypercholesterolaemia

Swiss-Prot

AP50

(LDL)-receptor

Shibire

FURTHER INFORMATION

Michael Roth's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, M. Clathrin-mediated endocytosis before fluorescent proteins. Nat Rev Mol Cell Biol 7, 63–68 (2006). https://doi.org/10.1038/nrm1783

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing