Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional regulation and transformation by Myc proteins

Key Points

  • Myc genes comprise a small, multi-gene family and are implicated in the genesis of many different human tumours. Enhanced expression of Myc genes promotes unrestricted proliferation and contributes to many aspects of the tumour-cell phenotype.

  • Myc proteins are transcription factors and form obligate heterodimers with Max. They activate and repress large groups of mammalian genes by recruiting histone-modifying and chromatin-remodelling enzymes.

  • Important Myc target genes include cell-cycle regulatory genes, genes involved in protein biosynthesis and genes involved in specific metabolic pathways. Surprisingly, Myc target genes also comprise genes transcribed by RNA polymerases I and III.

  • The stability and function of Myc proteins is regulated by Ras-dependent signalling pathways.

  • Transformation by Myc proteins is inhibited by fail-safe mechanisms such as apoptosis. Precisely how Myc induces apoptosis remains unresolved, but Myc-induced genomic instability might play an important part in this process.

Abstract

Myc genes are key regulators of cell proliferation, and their deregulation contributes to the genesis of most human tumours. Recently, a wealth of data has shed new light on the biochemical functions of Myc proteins and on the mechanisms through which they function in cellular transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional regulation by Myc-family proteins through E-box elements.
Figure 2: Transcriptional repression by Myc through Miz1.
Figure 3: Domains of Myc and their binding proteins.
Figure 4: Regulation of Myc function by Ras-dependent signalling pathways.
Figure 5: Regulation of transcriptional repression by Myc through Ras-dependent signalling pathways.
Figure 6: Pathways that are implicated in Myc-induced apoptosis.

Similar content being viewed by others

References

  1. Levens, D. Disentangling the MYC web. Proc. Natl Acad. Sci. USA 99, 5757–5759 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Levens, D. L. Reconstructing MYC. Genes Dev. 17, 1071–1077 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Eisenman, R. N. Deconstructing Myc. Genes Dev. 15, 2023–2030 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, K. J., Polack, A. & Dalla-Favera, R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283, 676–679 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Pelengaris, S. & Khan, M. The many faces of c-MYC. Arch. Biochem. Biophys. 416, 129–136 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Pelengaris, S., Khan, M. & Evan, G. I. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109, 321–334 (2002). Demonstrates the multiple roles of Myc in tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  7. Eilers, M., Schirm, S. & Bishop, J. M. The MYC protein activates transcription of the α-prothymosin gene. EMBO J. 10, 133–141 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freytag, S. O. & Geddes, T. J. Reciprocal regulation of adipogenesis by Myc and C/EBPα. Science 256, 379–382 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999). Shows the link between Myc and cell growth.

    Article  CAS  PubMed  Google Scholar 

  11. Baudino, T. A. et al. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 16, 2530–2543 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arnold, I. & Watt, F. M. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol. 11, 558–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Frye, M., Gardner, C., Li, E. R., Arnold, I. & Watt, F. M. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development 130, 2793–2808 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Felsher, D. W. & Bishop, J. M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039–1048 (1997).

    CAS  PubMed  Google Scholar 

  16. Mateyak, M. K., Obaya, A. J. & Sedivy, J. M. c-Myc regulates cyclin D–Cdk4 and –Cdk6 activity but affects cell cycle progression at multiple independent points. Mol. Cell. Biol. 19, 4672–4683 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trumpp, A. et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414, 768–773 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. de Alboran, I. M. et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 14, 45–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Knoepfler, P. S., Cheng, P. F. & Eisenman, R. N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 16, 2699–2712 (2002). References 17–19 analyse the effect of Myc knockouts in mammalian organ systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herold, S. et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell 10, 509–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Blackwood, E. M. & Eisenman, R. N. Max: a helix–loop–helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Blackwood, E. M., Lü scher, B. & Eisenman, R. N. Myc and Max associate in vivo. Genes Dev. 6, 71–80 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211–222 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Hurlin, P. J., Queva, C. & Eisenman, R. N. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev. 11, 44–58 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Hurlin, P. J. et al. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J. 15, 2030–2038 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zervos, A. S., Gyuris, J. & Brent, R. Mxi1, a protein that specifically interacts with Max to bind Myc–Max recognition sites. Cell 72, 223–232 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Blackwell, T. K. et al. Binding of Myc proteins to canonical and noncanonical DNA sequences. Mol. Cell. Biol. 13, 5216–5224 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blackwell, T. K., Kretzner, L., Blackwood, E. M., Eisenman, R. N. & Weintraub, H. Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149–1151 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Ayer, D. E. & Eisenman, R. N. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentation. Genes Dev. 7, 2110–2119 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Amati, B. et al. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233–245 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Mao, D. Y. et al. Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr. Biol. 13, 882–886 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Nair, S. K. & Burley, S. K. X-ray structures of Myc–Max and Mad–Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112, 193–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Nilsson, J. A. et al. Mnt loss triggers Myc transcription targets, proliferation, apoptosis, and transformation. Mol. Cell. Biol. 24, 1560–1569 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hurlin, P. J. et al. Deletion of Mnt leads to disrupted cell cycle control and tumorigenesis. Embo J. 22, 4584–4596 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schreiber-Agus, N. et al. Role of Mxi1 in ageing organ systems and the regulation of normal and neoplastic growth. Nature 393, 483–487 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Foley, K. P. et al. Targeted disruption of the MYC antagonist MAD1 inhibits cell cycle exit during granulocyte differentiation. EMBO J. 17, 774–785 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nikiforov, M. A., Popov, N., Kotenko, I., Henriksson, M. & Cole, M. D. The Mad and Myc basic domains are functionally equivalent. J. Biol. Chem. 278, 11094–11099 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. James, L. & Eisenman, R. Myc and Mad bHLHZ domains possess identical DNA-binding specificities but only partially overlapping functions in vivo. Proc. Natl Acad. Sci. USA 99, 10429–10434 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J. 16, 5672–5686 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, J. W. et al. Evaluation of Myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol. Cell. Biol. 24, 5923–5936 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bouchard, C. et al. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev. 15, 2042–2047 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M. & Farnham, P. J. c-Myc target gene specificity is determined by a post-DNA-binding mechanism. Proc. Natl Acad. Sci. USA 95, 13887–13892 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waters, C. M., Littlewood, T. D., Hancock, D. C., Moore, J. P. & Evan, G. I. c-Myc protein expression in untransformed fibroblasts. Oncogene 6, 797–805 (1991).

    CAS  PubMed  Google Scholar 

  46. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biol. 7, 295–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol. 7, 303–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Poortinga, G. et al. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. Embo J. 23, 3325–3335 (2004). References 49–53 link Myc to RNA-pol-I- and III-dependent transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grandori, C. et al. Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev. 17, 1569–1574 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biol. 3, 392–399 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nature Cell Biol. 3, 400–408 (2001). References 55 and 56 define a pathway for gene repression by Myc.

    Article  CAS  PubMed  Google Scholar 

  57. Seoane, J., Le, H. V. & Massague, J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Wanzel, M. et al. Akt and 14-3-3η regulate Miz1 to control cell-cycle arrest after DNA damage. Nature Cell Biol. 7, 30–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Barsyte-Lovejoy, D., Mao, D. Y. & Penn, L. Z. c-Myc represses the proximal promoters of GADD45a and GADD153 by a post-RNA polymerase II recruitment mechanism. Oncogene 23, 3481–3486 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Gartel, A. L. et al. Myc represses the p21WAF1/CIP1 promoter and interacts with Sp1/Sp3. Proc. Natl Acad. Sci. USA 98, 4510–4515 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Izumi, H. et al. Mechanism for the transcriptional repression by c-Myc on PDGF β-receptor. J. Cell Sci. 114, 1533–1544 (2001).

    CAS  PubMed  Google Scholar 

  62. Roy, A. L., Carruthers, C., Gutjahr, T. & Roeder, R. G. Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 365, 359–361 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Shrivastava, A. et al. Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc. Science 262, 1889–1892 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Qi, Y. et al. p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431, 712–717 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Datta, A. et al. Myc-ARF (alternate reading frame) interaction inhibits the functions of Myc. J. Biol. Chem. 279, 36698–36707 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Oster, S. K., Mao, D. Y., Kennedy, J. & Penn, L. Z. Functional analysis of the N-terminal domain of the Myc oncoprotein. Oncogene 22, 1998–2010 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Bahram, F., von der Lehr, N., Cetinkaya, C. & Larsson, L. G. c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95, 2104–2110 (2000).

    CAS  PubMed  Google Scholar 

  68. Herbst, A. et al. A conserved element in Myc that negatively regulates its proapoptotic activity. EMBO Rep. 6, 177–183 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Herbst, A., Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Multiple cell-type-specific elements regulate Myc protein stability. Oncogene 23, 3863–3871 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Stone, J. et al. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol. Cell. Biol. 7, 1697–1709 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D. & Cole, M. D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Frank, S. R., Schroeder, M., Fernandez, P., Taubert, S. & Amati, B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Park, J., Kunjibettu, S., McMahon, S. B. & Cole, M. D. The ATM-related domain of TRRAP is required for histone acetyltransferase recruitment and Myc-dependent oncogenesis. Genes Dev. 15, 1619–1624 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fuchs, M. et al. The p400 complex is an essential E1A transformation target. Cell 106, 297–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084–2087 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Kobor, M. S. et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol. 2, E131 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wood, M. A., McMahon, S. B. & Cole, M. D. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol. Cell 5, 321–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Jonsson, Z. O., Jha, S., Wohlschlegel, J. A. & Dutta, A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol. Cell 16, 465–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Etard, C., Gradl, D., Eilers, M. & Wedlich, D. Pontin and Reptin regulate proliferation in early Xenopus embryos through the Myc/Miz pathway. Mech. Dev. (in the press).

  80. Kim, S. Y., Herbst, A., Tworkowski, K. A., Salghetti, S. E. & Tansey, W. P. Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Gonzalez, F., Delahodde, A., Kodadek, T. & Johnston, S. A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296, 548–550 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Nikiforov, M. A. et al. TRRAP-dependent and TRRAP-independent transcriptional activation by Myc family oncoproteins. Mol. Cell. Biol. 22, 5054–5063 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vervoorts, J. et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep. 4, 1–7 (2003).

    Article  CAS  Google Scholar 

  85. Eberhardy, S. R. & Farnham, P. J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Bouchard, C., Marquardt, J., Bras, A., Medema, R. H. & Eilers, M. Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J. 23, 2830–2840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kanazawa, S., Soucek, L., Evan, G., Okamoto, T. & Peterlin, B. M. c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene 22, 5707–5711 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Eberhardy, S. R. & Farnham, P. J. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J. Biol. Chem. 276, 48562–48571 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Brenner, C. et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. E mbo J. 24, 336–346 (2005).

    CAS  Google Scholar 

  90. Beer, S. et al. Developmental context determines latency of MYC-induced tumorigenesis. PLoS Biol. 2, E332 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Kowalczyk, A. et al. The critical role of cyclin D2 in adult neurogenesis. J. Cell Biol. 167, 209–213 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kenney, A. M., Cole, M. D. & Rowitch, D. H. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130, 15–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Warner, B. J., Blain, S. W., Seoane, J. & Massague, J. Myc downregulation by transforming growth factor β required for activation of the p15Ink4b G1 arrest pathway. Mol. Cell. Biol. 19, 5913–5922 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Berwanger, B. et al. Loss of a Fyn-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. Cancer Cell 2, 377–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Lossos, I. S. et al. Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc. Natl Acad. Sci. USA 99, 8886–8891 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Miliani de Marval, P. L. et al. Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol. Cell. Biol. 24, 7538–7547 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hermeking, H. et al. Identification of CDK4 as a target of c-MYC. Proc. Natl Acad. Sci. USA 97, 2229–2234 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang, W. et al. Repression of transcription of the p27 Kip1 cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 20, 1688–1702 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl Acad. Sci. USA 94, 6658–6663 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Semenza, G. L. et al. 'The metabolism of tumours: 70 years later. Novartis Found. Symp. 240, 251–260; discussion 260–264 (2001).

    CAS  PubMed  Google Scholar 

  104. Bowen, H. et al. c-Myc represses and Miz-1 activates the murine natural resistance-associated protein 1 promoter. J. Biol. Chem. 277, 34997–35006 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Nikiforov, M. A. et al. A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol. Cell. Biol. 22, 5793–5800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–1393 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rosenwald, I. B., Rhoads, D. B., Callanan, L. D., Isselbacher, K. J. & Schmidt, E. V. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2α in response to growth induction by c-myc. Proc. Natl Acad. Sci. USA 90, 6175–6178 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Greasley, P. J., Bonnard, C. & Amati, B. Myc induces the nucleolin and BN51 genes: possible implications in ribosome biogenesis. Nucleic Acids Res. 28, 446–453 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Menssen, A. & Hermeking, H. Characterization of the c-MYC-regulated transcriptome by SAGE: Identification and analysis of c-MYC target genes. Proc. Natl Acad. Sci. USA 99, 6274–6279 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Beier, R. et al. Induction of cyclin E–cdk2 kinase activity, E2F-dependent transcription and cell growth by myc are genetically separable events. EMBO J. 19, 5813–5823. (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: marvelouslY complex. Adv. Cancer Res. 84, 81–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  114. Drayton, S. et al. Tumor suppressor p16INK4a determines sensitivity of human cells to transformation by cooperating cellular oncogenes. Cancer Cell 4, 301–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Wei, W., Jobling, W. A., Chen, W., Hahn, W. C. & Sedivy, J. M. Abolition of cyclin-dependent kinase inhibitor p16Ink4a and p21Cip1/Waf1 functions permits Ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Mol. Cell. Biol. 23, 2859–2870 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biol. 6, 308–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Gregory, M. A., Qi, Y. & Hann, S. R. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem. 278, 51606–51612 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Welcker, M., Orian, A., Grim, J. A., Eisenman, R. N. & Clurman, B. E. A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr. Biol. 14, 1852–1857 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yada, M. et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23, 2116–2125 (2004). References 117–121 show how Myc is degraded by the proteasome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Watnick, R. S., Cheng, Y. N., Rangarajan, A., Ince, T. A. & Weinberg, R. A. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3, 219–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. Endo, T. & Nadal-Ginard, B. Transcriptional and posttranscriptional control of c-myc during myogenesis: its mRNA remains inducible in differentiated cells and does not suppress the differentiated phenotype. Mol. Cell. Biol. 6, 1412–1421 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF–Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jacobs, J. J. et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nature Genet. 26, 291–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Aslanian, A., Iaquinta, P. J., Verona, R. & Lees, J. A. Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev. 18, 1413–1422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baudino, T. A. et al. Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol. Cell 11, 905–914 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Leone, G. et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell 8, 105–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Juin, P., Hueber, A. O., Littlewood, T. & Evan, G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev. 13, 1367–1381 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Soucie, E. L. et al. Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Mol. Cell. Biol. 21, 4725–4736 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mitchell, K. O. et al. Bax is a transcriptional target and mediator of c-myc-induced apoptosis. Cancer Res. 60, 6318–6325 (2000).

    CAS  PubMed  Google Scholar 

  135. Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA 101, 6164–6169 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Eischen, C. M., Woo, D., Roussel, M. F. & Cleveland, J. L. Apoptosis triggered by Myc-induced suppression of Bcl-XL or Bcl-2 is bypassed during lymphomagenesis. Mol. Cell. Biol. 21, 5063–5070 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Med. 10, 484–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Sheen, J. H. & Dickson, R. B. Overexpression of c-Myc alters G1/S arrest following ionizing radiation. Mol. Cell. Biol. 22, 1819–1833 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function. A mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002). Provides a potential link between Myc and genomic instability.

    Article  CAS  PubMed  Google Scholar 

  141. Karlsson, A. et al. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression. Proc. Natl Acad. Sci. USA 100, 9974–9979 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Karlsson, A. et al. Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood 101, 2797–2803 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Rockwood, L. D., Felix, K. & Janz, S. Elevated presence of retrotransposons at sites of DNA double strand break repair in mouse models of metabolic oxidative stress and MYC-induced lymphoma. Mutat. Res. 548, 117–125 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Sargent, L. M. et al. Nonrandom cytogenetic alterations in hepatocellular carcinoma from transgenic mice overexpressing c-Myc and transforming growth factor-α in the liver. Am. J. Pathol. 154, 1047–1055 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Soucek, L. & Evan, G. Myc — is this the oncogene from hell? Cancer Cell 1, 406–408 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. D'Cruz, C. M. et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nature Med. 7, 235–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  PubMed  Google Scholar 

  149. Bello-Fernandez, C., Packham, G. & Cleveland, J. L. The ornithine decarboxylase gene is a transcriptional target of c-MYC. Proc. Natl Acad. Sci. USA 90, 7804–7808 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lewis, B. C. et al. Tumor induction by the c-Myc target genes rcl and lactate dehydrogenase A. Cancer Res. 60, 6178–6183 (2000).

    CAS  PubMed  Google Scholar 

  151. Wood, L. J. et al. HMG-I/Y, a new c-Myc target gene and potential oncogene. Mol. Cell. Biol. 20, 5490–5502 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Orre, R. S., Cotter, M. A., Subramanian, C. & Robertson, E. S. Prothymosin α functions as a cellular oncoprotein by inducing transformation of rodent fibroblasts in vitro. J. Biol. Chem. 276, 1794–1799 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Zhu, P. et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5, 455–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Bouchard, C. et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J. 18, 5321–5333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Oliver, T. G. et al. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc. Natl Acad. Sci. USA 100, 7331–7336 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sears, R., Ohtani, K. & Nevins, J. R. Identification of positively and negatively acting elements regulating expression of the E2F2 gene in response to cell growth signals. Mol. Cell. Biol. 17, 5227–5235 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to all colleagues for the work we could not cite owing to space constraints. Work in M.E.'s laboratory is funded by the Deutsche Forschungsgemeinschaft, the European Union, the Deutsche Krebshilfe and the Thyssen Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Eilers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

B-Myc

c-Myc

L-Myc

N-Myc

S-Myc

Swiss-Prot

BCL2

BCL-XL

CBP

CDK4

cyclin D1

cyclin D2

DNMT3a

E2F2

GCN5

Mad4

Max

Mnt

Mxi1

p53

P300

TIP48

TIP49

TIP60

FURTHER INFORMATION

Martin Eilers' laboratory

Myc and Human Cancer Database

Glossary

LEUCINE ZIPPER

A leucine-rich protein domain that is present in a large class of dimeric transcription factors and that mediates interactions with other proteins with a similar domain. It consists of a coiled-coil of two α-helices and connects the dimerization partners.

ZINC-FINGER PROTEIN

A protein (usually a transcription factor) that contains one of several types of conserved DNA-binding motifs with conserved Cys residues. The sulphydryl groups of the Cys residues coordinate a Zn2+ ion.

HISTONE ACETYLTRANSFERASE

(HAT). An enzyme that adds acetyl groups to histones. Many HATs function as transcriptional coactivators.

HISTONE EXCHANGE FACTOR

A multiprotein complex that catalyses the replacement of canonical histones by histone variants, or the replacement of modified histone variants by unmodified histones.

CHROMATIN REMODELLING COMPLEX

A multiprotein complex that regulates the accessibility of DNA for the transcriptional machinery by ATP-dependent mobilization of nucleosomes.

E3 UBIQUITIN LIGASE

The third enzyme in a pathway that is responsible for the ubiquitylation and subsequent degradation of target proteins. E3 enzymes, which are numerous, provide platforms for binding target substrates, thereby conferring specificity to this process.

PROTEASOME

A large multisubunit protease complex that selectively degrades multi-ubiquitylated proteins. It contains a 20S component that incorporates the catalytic activity, and two regulatory 19S components.

MEDIATOR COMPLEX

A multiprotein complex that functions as a conserved interface between gene-specific regulatory proteins and the general transcriptional machinery of eukaryotes.

APC PATHWAY

Named after the adenomatous polyposis coli (APC) tumour suppressor, which regulates the level of free β-catenin by keeping β-catenin in a complex in which it is labelled for degradation. Wnt signalling through the frizzled receptor disrupts this complex and free β-catenin accumulates and can enter the nucleus to activate target genes such as Myc.

SONIC HEDGEHOG PATHWAY

Sonic hedgehog (SHH) is a secreted morphogen that derepresses the smoothened protein by binding to the patched receptor. This, in turn, activates the transcription factor GLI. The SHH pathway is essential for embryonic development.

FOXO FAMILY

A subclass of an evolutionarily highly conserved family of transcription factors that contain a so-called forkhead box.

14-3-3 PROTEINS

A family of dimeric proteins that regulate the function of substrate proteins by binding to specific phosphorylated Ser or Thr residues.

SENESCENCE

Cellular, or replicative, senescence is a process associated with ageing and longevity that leads to a limited capacity of cells to reproduce in culture.

BH3-ONLY PROTEIN

A subclass of pro-apoptotic proteins of the BCL2 family that differs from another subclass by the presence of only one of three BCL2-homology (BH) domains, BH3.

KARYOTYPE

The number, sizes and shapes of the metaphase chromosomes of a eukaryotic cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adhikary, S., Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6, 635–645 (2005). https://doi.org/10.1038/nrm1703

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1703

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing