Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immunobiology of the TAM receptors

Key Points

  • The TAM receptor protein tyrosine kinases — TYRO3, AXL and MER — have important roles in the immune, nervous, reproductive and vascular systems. Two closely related proteins — growth-arrest-specific 6 (GAS6) and protein S — function as TAM ligands.

  • Mutant mice that lack all three TAM receptors are viable, but exhibit a plethora of phenotypes, all of which appear to be degenerative rather than developmental in nature.

  • Mice deficient in all three TAM receptors develop a severe lymphoproliferative disorder accompanied by broad-spectrum autoimmune disease. These immune phenotypes reflect a loss of TAM function in dendritic cells (DCs), macrophages and natural killer (NK) cells, rather than in lymphocytes.

  • Recent studies have revealed that autoimmunity in TAM triple mutants results from the loss of TAM-mediated regulation of two phenomena: the inhibition of the innate inflammatory response to pathogens by DCs and macrophages, and the phagocytosis of apoptotic cells by these antigen-presenting cells.

  • Both TAM-mediated inhibition of inflammation and TAM-mediated stimulation of NK-cell differentiation require an intimate signalling interaction between TAM receptors and cytokine receptors, and this may prove to be a general feature of TAM action in the immune system.

  • The discovery of TAM receptor function illuminates novel targets for therapeutic intervention. Future studies focused on the selective activation or inhibition of this receptor family may lead to new therapies for chronic inflammatory diseases and new vaccine adjuvants, respectively.

Abstract

Recent studies have revealed that the TAM receptor protein tyrosine kinases — TYRO3, AXL and MER — have pivotal roles in innate immunity. They inhibit inflammation in dendritic cells and macrophages, promote the phagocytosis of apoptotic cells and membranous organelles, and stimulate the maturation of natural killer cells. Each of these phenomena may depend on a cooperative interaction between TAM receptor and cytokine receptor signalling systems. Although its importance was previously unrecognized, TAM signalling promises to have an increasingly prominent role in studies of innate immune regulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TAM receptors and their ligands.
Figure 2: An inflammation cycle regulated by TAM signalling.
Figure 3: TAM signalling and the 'homeostatic phagocytosis' of apoptotic cells and membranes.
Figure 4: TAM signalling and the maturation of NK cells.

References

  1. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    CAS  PubMed  Google Scholar 

  2. Bublil, E. M. & Yarden, Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr. Opin. Cell Biol. 19, 124–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nature Rev. Mol. Cell Biol. 6, 462–475 (2005).

    Article  CAS  Google Scholar 

  4. Lai, C. & Lemke, G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6, 691–704 (1991). This study first identified the TAM receptors as a distinct receptor PTK subfamily.

    Article  CAS  PubMed  Google Scholar 

  5. O'Bryan, J. P. et al. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol. Cell. Biol. 11, 5016–5031 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lapraz, F. et al. RTK and TGF-β signaling pathways genes in the sea urchin genome. Dev. Biol. 300, 132–152 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Sasaki, T. et al. Structural basis for Gas6–Axl signalling. EMBO J. 25, 80–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Stitt, T. N. et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80, 661–670 (1995). This study reports the identification of two ligands for TAM receptors.

    Article  CAS  PubMed  Google Scholar 

  9. Nagata, K. et al. Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J. Biol. Chem. 271, 30022–30027 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Prasad, D. et al. TAM receptor function in the retinal pigment epithelium. Mol. Cell. Neurosci. 33, 96–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Uehara, H. & Shacter, E. Auto-oxidation and oligomerization of protein S on the apoptotic cell surface is required for Mer tyrosine kinase-mediated phagocytosis of apoptotic cells. J. Immunol. 180, 2522–2530 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Rezende, S. M., Simmonds, R. E. & Lane, D. A. Coagulation, inflammation, and apoptosis: different roles for protein S and the protein S–C4b binding protein complex. Blood 103, 1192–1201 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, M. et al. Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins. Nature Struct. Biol. 10, 751–756 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Nakano, T. et al. Requirement of γ-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells. Biochem. J. 323, 387–392 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hasanbasic, I., Rajotte, I. & Blostein, M. The role of γ-carboxylation in the anti-apoptotic function of Gas6. J. Thromb. Haemost. 3, 2790–2797 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Benzakour, O. & Kanthou, C. The anticoagulant factor, protein S, is produced by cultured human vascular smooth muscle cells and its expression is up-regulated by thrombin. Blood 95, 2008–2014 (2000).

    CAS  PubMed  Google Scholar 

  17. Anderson, H. A. et al. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nature Immunol. 4, 87–91 (2003). This work identified the TAM ligand protein S as the factor responsible for serum-stimulated phagocytosis of apoptotic cells.

    Article  CAS  Google Scholar 

  18. Sasaki, T. et al. Crystal structure of a C-terminal fragment of growth arrest-specific protein Gas6. Receptor tyrosine kinase activation by laminin G-like domains. J. Biol. Chem. 277, 44164–44170 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, Q. et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398, 723–728 (1999). This study documented the progressive degeneration of germ cells in the TAM triple mutant mice.

    Article  CAS  PubMed  Google Scholar 

  21. Lu, Q. & Lemke, G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293, 306–311 (2001). This study demonstrated that TAM-deficient mice develop severe lymphoproliferation and systemic autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  22. Caraux, A. et al. Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nature Immunol. 7, 747–754 (2006). This work showed that the TAM receptors are required for NK-cell differentiation and maturation.

    Article  CAS  Google Scholar 

  23. Angelillo-Scherrer, A. et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nature Med. 7, 215–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Yanagita, M. et al. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. J. Clin. Invest. 110, 239–246 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rothlin, C. V., Ghosh, S., Zuniga, E. I., Oldstone, M. B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007). This study identified a new negative regulatory pathway driven by the TAM receptor family, and established its role as an inhibitor of both TLR- and cytokine-driven immune responses in APCs.

    Article  CAS  PubMed  Google Scholar 

  26. Camenisch, T. D., Koller, B. H., Earp, H. S. & Matsushima, G. K. A novel receptor tyrosine kinase, Mer, inhibits TNF-α production and lipopolysaccharide-induced endotoxic shock. J. Immunol. 162, 3498–3503 (1999).

    CAS  PubMed  Google Scholar 

  27. Tibrewal, N. et al. Autophosphorylation docking site Tyr-867 in Mer receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-κB transcriptional activation. J. Biol. Chem. 283, 3618–3627 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Wormald, S. & Hilton, D. J. The negative regulatory roles of suppressor of cytokine signaling proteins in myeloid signaling pathways. Curr. Opin. Hematol. 14, 9–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Yoshimura, A., Nishinakamura, H., Matsumura, Y. & Hanada, T. Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Res. Ther. 7, 100–110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levy, D. E. & Darnell, J. E. Jr. Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  31. Sharif, M. N. et al. Twist mediates suppression of inflammation by type I IFNs and Axl. J. Exp. Med. 203, 1891–1901 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, H. et al. Immunoexpression of Tyro 3 family receptors — Tyro 3, Axl, and Mer — and their ligand Gas6 in postnatal developing mouse testis. J. Histochem. Cytochem. 53, 1355–1364 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Nakanishi, Y. & Shiratsuchi, A. Phagocytic removal of apoptotic spermatogenic cells by Sertoli cells: mechanisms and consequences. Biol. Pharm. Bull. 27, 13–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Nakagawa, A., Shiratsuchi, A., Tsuda, K. & Nakanishi, Y. In vivo analysis of phagocytosis of apoptotic cells by testicular Sertoli cells. Mol. Reprod. Dev. 71, 166–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Ueno, H. & Mori, H. Morphometrical analysis of Sertoli cell ultrastructure during the seminiferous epithelial cycle in rats. Biol. Reprod. 43, 769–776 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Young, R. W. & Bok, D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J. Cell Biol. 42, 392–403 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D'Cruz, P. M. et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 9, 645–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Nandrot, E. et al. Homozygous deletion in the coding sequence of the c-mer gene in RCS rats unravels general mechanisms of physiological cell adhesion and apoptosis. Neurobiol. Dis. 7, 586–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Duncan, J. L. et al. An RCS-like retinal dystrophy phenotype in mer knockout mice. Invest. Ophthalmol. Vis. Sci. 44, 826–838 (2003).

    Article  PubMed  Google Scholar 

  40. Gal, A. et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nature Genet. 26, 270–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Tschernutter, M. et al. Clinical characterisation of a family with retinal dystrophy caused by mutation in the Mertk gene. Br. J. Ophthalmol. 90, 718–723 (2006). References 37 to 41 identified the essential role of MER in retinal homeostasis and phagocytosis in mice, rats and humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001). This is the first study that demonstrated the importance of the TAM receptor MER in the clearance of apoptotic cells by macrophages.

    Article  CAS  PubMed  Google Scholar 

  43. Cohen, P. L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135–140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seitz, H. M., Camenisch, T. D., Lemke, G., Earp, H. S. & Matsushima, G. K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol. 178, 5635–5642 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Mahoney, J. A. & Rosen, A. Apoptosis and autoimmunity. Curr. Opin. Immunol. 17, 583–588 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nature Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  Google Scholar 

  47. Baccala, R., Hoebe, K., Kono, D. H., Beutler, B. & Theofilopoulos, A. N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nature Med. 13, 543–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Baumann, I. et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 46, 191–201 (2002).

    Article  PubMed  Google Scholar 

  49. Gaipl, U. S. et al. Clearance of apoptotic cells in human SLE. Curr. Dir. Autoimmun. 9, 173–187 (2006).

    CAS  PubMed  Google Scholar 

  50. Stuart, L. M. et al. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J. Immunol. 168, 1627–1635 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ravichandran, K. S. “Recruitment signals” from apoptotic cells: invitation to a quiet meal. Cell 113, 817–820 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Ogden, C. A. et al. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt's lymphoma. J. Immunol. 174, 3015–3023 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Lingnau, M., Hoflich, C., Volk, H. D., Sabat, R. & Docke, W. D. Interleukin-10 enhances the CD14-dependent phagocytosis of bacteria and apoptotic cells by human monocytes. Hum. Immunol. 68, 730–738 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Jung, M. et al. Expression profiling of IL-10-regulated genes in human monocytes and peripheral blood mononuclear cells from psoriatic patients during IL-10 therapy. Eur. J. Immunol. 34, 481–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Sen, P. et al. Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-κB activation in dendritic cells. Blood 109, 653–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wallet, M. A. et al. MerTK is required for apoptotic cell-induced T cell tolerance. J. Exp. Med. 205, 219–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, Y., Tibrewal, N. & Birge, R. B. Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol. 16, 189–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Finnemann, S. C. & Nandrot, E. F. MerTK activation during RPE phagocytosis in vivo requires αVβ5 integrin. Adv. Exp. Med. Biol. 572, 499–503 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mahajan, N. P. & Earp, H. S. An SH2 domain-dependent, phosphotyrosine-independent interaction between Vav1 and the Mer receptor tyrosine kinase: a mechanism for localizing guanine nucleotide-exchange factor action. J. Biol. Chem. 278, 42596–42603 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Lodoen, M. B. & Lanier, L. L. Natural killer cells as an initial defense against pathogens. Curr. Opin. Immunol. 18, 391–398 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smyth, M. J. et al. Activation of NK cell cytotoxicity. Mol. Immunol. 42, 501–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Screpanti, V., Wallin, R. P., Grandien, A. & Ljunggren, H. G. Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol. Immunol. 42, 495–499 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Screpanti, V., Wallin, R. P., Ljunggren, H. G. & Grandien, A. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J. Immunol. 167, 2068–2073 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Lieberman, J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nature Rev. Immunol. 3, 361–370 (2003).

    Article  CAS  Google Scholar 

  68. Trapani, J. A. & Smyth, M. J. Functional significance of the perforin/granzyme cell death pathway. Nature Rev. Immunol. 2, 735–747 (2002).

    Article  CAS  Google Scholar 

  69. Arase, H., Arase, N. & Saito, T. Interferon γ production by natural killer (NK) cells and NK1.1+ T cells upon NKR-P1 cross-linking. J. Exp. Med. 183, 2391–2396 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Gosselin, P. et al. Induction of DAP12 phosphorylation, calcium mobilization, and cytokine secretion by Ly49H. J. Leukoc. Biol. 66, 165–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Ortaldo, J. R. & Young, H. A. Expression of IFN-γ upon triggering of activating Ly49D NK receptors in vitro and in vivo: costimulation with IL-12 or IL-18 overrides inhibitory receptors. J. Immunol. 170, 1763–1769 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Raulet, D. H., Vance, R. E. & McMahon, C. W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Vivier, E., Nunès, J. A. & Vély, F. Natural killer cell signaling pathways. Science 306, 1517–1519 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Lanier, L. L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Roth, C., Rothlin, C., Riou, S., Raulet, D. H. & Lemke, G. Stromal-cell regulation of natural killer cell differentiation. J. Mol. Med. 85, 1047–1056 (2007).

    Article  PubMed  Google Scholar 

  76. Behrens, E. M. et al. The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. Eur. J. Immunol. 33, 2160–2167 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cooper, M. A. et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100, 3633–3638 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Prlic, M., Blazar, B. R., Farrar, M. A. & Jameson, S. C. In vivo survival and homeostatic proliferation of natural killer cells. J. Exp. Med. 197, 967–976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koka, R. et al. Interleukin (IL)-15Rα-deficient natural killer cells survive in normal but not IL-15Rα-deficient mice. J. Exp. Med. 197, 977–984 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17, 537–547 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Budagian, V. et al. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control. EMBO J. 24, 4260–4270 (2005). This study documented the IL-15-induced transactivation of the TAM receptor AXL and showed both physical and functional crosstalk between the IL-15 receptor and AXL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Broad, A., Jones, D. E. & Kirby, J. A. Toll-like receptor (TLR) response tolerance: a key physiological “damage limitation” effect and an important potential opportunity for therapy. Curr. Med. Chem. 13, 2487–2502 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Dalpke, A. H., Lehner, M. D., Hartung, T. & Heeg, K. Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance. Immunology 116, 203–212 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Borgel, D. et al. Elevated growth-arrest-specific protein 6 plasma levels in patients with severe sepsis. Crit. Care Med. 34, 219–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Meesters, E. W. et al. The inflammation and coagulation cross-talk in patients with systemic lupus erythematosus. Blood Coagul. Fibrinolysis 18, 21–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Brouwer, J. L., Bijl, M., Veeger, N. J., Kluin-Nelemans, H. C. & van der Meer, J. The contribution of inherited and acquired thrombophilic defects, alone or combined with antiphospholipid antibodies, to venous and arterial thromboembolism in patients with systemic lupus erythematosus. Blood 104, 143–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Song, K. S., Park, Y. S. & Kim, H. K. Prevalence of anti-protein S antibodies in patients with systemic lupus erythematosus. Arthritis Rheum. 43, 557–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Kulman, J. D. et al. Vitamin K-dependent proteins in Ciona intestinalis, a basal chordate lacking a blood coagulation cascade. Proc. Natl Acad. Sci. USA 103, 15794–15799 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liongue, C. & Ward, A. C. Evolution of Class I cytokine receptors. BMC Evol. Biol. 7, 120 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Krause, C. D. & Pestka, S. Evolution of the Class 2 cytokines and receptors, and discovery of new friends and relatives. Pharmacol. Ther. 106, 299–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Melaragno, M. G. et al. Gas6 inhibits apoptosis in vascular smooth muscle: role of Axl kinase and Akt. J. Mol. Cell. Cardiol. 37, 881–887 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Korshunov, V. A., Daul, M., Massett, M. P. & Berk, B. C. Axl mediates vascular remodeling induced by deoxycorticosterone acetate-salt hypertension. Hypertension 50, 1057–1062 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Korshunov, V. A., Mohan, A. M., Georger, M. A. & Berk, B. C. Axl, a receptor tyrosine kinase, mediates flow-induced vascular remodeling. Circ. Res. 98, 1446–1452 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Angelillo-Scherrer, A. et al. Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J. Clin. Invest. 115, 237–246 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gould, W. R. et al. Gas6 receptors Axl, Sky and Mer enhance platelet activation and regulate thrombotic responses. J. Thromb. Haemost. 3, 733–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Angelillo-Scherrer, A. et al. Role of Gas6 in erythropoiesis and anemia in mice. J. Clin. Invest. 118, 583–596 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Graham, D. K. et al. Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia. Clin. Cancer Res. 12, 2662–2669 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Keating, A. K. et al. Lymphoblastic leukemia/lymphoma in mice overexpressing the Mer (MerTK) receptor tyrosine kinase. Oncogene 25, 6092–6100 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Nakamura, Y. S. et al. Tyro 3 receptor tyrosine kinase and its ligand, Gas6, stimulate the function of osteoclasts. Stem Cells 16, 229–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Katagiri, M. et al. Mechanism of stimulation of osteoclastic bone resorption through Gas6/Tyro 3, a receptor tyrosine kinase signaling, in mouse osteoclasts. J. Biol. Chem. 276, 7376–7382 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Shankar, S. L. et al. The growth arrest-specific gene product Gas6 promotes the survival of human oligodendrocytes via a phosphatidylinositol 3-kinase-dependent pathway. J. Neurosci. 23, 4208–4218 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shankar, S. L. et al. Gas6/Axl signaling activates the phosphatidylinositol 3-kinase/Akt1 survival pathway to protect oligodendrocytes from tumor necrosis factor α-induced apoptosis. J. Neurosci. 26, 5638–5648 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shimojima, M., Ikeda, Y. & Kawaoka, Y. The mechanism of Axl-mediated Ebola virus infection. J. Infect. Dis. 196 (Suppl. 2), 259–263 (2007).

    Article  CAS  Google Scholar 

  105. Shimojima, M. et al. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J. Virol. 80, 10109–10116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratory is supported by grants from the Lupus Research Institute and the US National Institutes of Health (G.L.), by the Salk Institute (G.L. and C.V.R.) and by the Pew Latin American Fellows Program (C.V.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Lemke.

Supplementary information

supplementary information S1 (Table)

TAM receptor and ligand expression (PDF 205 kb)

Related links

Related links

FURTHER INFORMATION

Greg Lemke's homepage

The human kinome

Glossary

Natural killer (NK) cells

NK cells are lymphoid cells capable of lysing bacteria- and virus-infected cells, as well as many tumour cells, without prior sensitization. They have important roles in combating infections, in the immune surveillance of cancer and in host-versus-graft rejection.

Toll-like receptors

(TLRs). Pattern-recognition receptors that recognize molecules — such as the lipopolysaccharide of bacterial cell walls, the unmethylated CpG-containing deoxynucleotides of bacterial DNA and the double-stranded RNAs of viruses — that are broadly shared by pathogens but not by host cells. Pathogen activation of TLRs initiates the innate immune response in dendritic cells and macrophages.

SOCS proteins

(Suppressor of cytokine signalling proteins). SOCS proteins inhibit STAT (signal-transducer and activator of transcription) phosphorylation by binding and inhibiting JAKs (Janus-family kinases) and/or competing with STATs for phosphotyrosine binding sites on cytokine receptors. They also inhibit signal transducers downstream of Toll-like receptor activation.

STATs

(Signal transducers and activators of transcription). STATs are latent cytoplasmic transcription factors that upon phosphorylation, typically by Janus-family kinases (JAKs), are activated. They then translocate to the nucleus, where they drive the transcription of their target genes. The signal transduction pathways downstream of many cytokine receptors depend on STAT protein activation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemke, G., Rothlin, C. Immunobiology of the TAM receptors. Nat Rev Immunol 8, 327–336 (2008). https://doi.org/10.1038/nri2303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing