Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of the cytoskeleton during leukocyte responses

Key Points

  • The leukocyte cytoskeleton is required to carry out dynamic immune functions.

  • The same basic mechanisms underlie actin regulation during cell migration and effector functions, and extracellular signals govern the formation of different signalling complexes to provide specific signals.

  • Microfilaments provide the leukocyte with plasticity to undergo extravasation, which depends on extracellular signals. Endothelial cells also undergo actin remodelling during extravasation to allow leukocyte transit without irreversibly compromising the integrity of the vessel wall.

  • Leukocyte polarity provides an excellent platform for leukocytes to explore their surroundings, gathering positional information and providing optimized responses during migration and activation.

  • T-cell–antigen-presenting cell (APC) cognate interactions and cytotoxic T lymphocyte (CTL)-mediated killing require intimate contacts between effector and target cells, which is optimized by cortical actin rearrangements. In turn, polarized vesicle secretion depends on microtubule repositioning towards the cellular interface.

  • Phagocytosis uses actin polymerization to surround the target particle and actomyosin contraction to squeeze and engulf it, closing the phagosomal structure.

  • The actin cytoskeleton is actively used by leukocytes during effector functions, but other situations, such as apoptosis, include morphological changes that are associated with the dysregulation of key molecules.

  • Intracellular bacteria and viruses manipulate the cellular cytoskeleton to prevent clearance and optimize pathogen survival and growth inside cells.

Abstract

The cytoskeleton is a cellular network of structural, adaptor and signalling molecules that regulates most cellular functions that are related to the immune response, including migration, extravasation, antigen recognition, activation and phagocytosis by different subsets of leukocytes. Recently, a large number of regulatory elements and structural constituents of the leukocyte cytoskeleton have been identified. In this review, we discuss the composition and regulation of the different cytoskeletal elements and their role in immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leukocyte extravasation into target tissues.
Figure 2: Receptor and cytoskeleton asymmetry during leukocyte migration.
Figure 3: Rho GTPases and microfilament regulation.
Figure 4: The lymphocyte cytoskeleton during T-cell–APC interactions and the formation of the immunological synapse.
Figure 5: Type I phagocytosis.
Figure 6: Cytoskeletal subversion by pathogens in immune cells.

Similar content being viewed by others

References

  1. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Pollard, P. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003). This review summarizes the present knowledge on actin polymerization and updates early concepts.

    CAS  PubMed  Google Scholar 

  3. Berg, J. S., Powell, B. C. & Cheney, R. E. A millenial myosin census. Mol. Biol. Cell 12, 780–794 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    CAS  PubMed  Google Scholar 

  5. Job, D., Valiron, O. & Oakley, B. Microtubule nucleation. Curr. Opin. Cell Biol. 15, 111–117 (2003).

    CAS  PubMed  Google Scholar 

  6. Nédélec, F., Surrey, T. & Karsenti, E. Self-organization and forces in the microtubule cytoskeleton. Curr. Opin. Cell Biol. 15, 118–124 (2003).

    PubMed  Google Scholar 

  7. Fuchs, E. & Cleveland, D. W. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514–519 (1998).

    CAS  PubMed  Google Scholar 

  8. Brown, M. J., Hallam, J. A., Colucci-Guyon, E. & Shaw, S. Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filaments. J. Immunol. 166, 6640–6646 (2001).

    CAS  PubMed  Google Scholar 

  9. Brown, M. J., Hallam, J. A., Liu, Y., Yamada, K. M. & Shaw, S. Integration of human T lymphocyte cytoskeleton by the cytolinker plectin. J. Immunol. 167, 641–645 (2001).

    CAS  PubMed  Google Scholar 

  10. McEver, R. P. Selectins: lectins that initiate adhesion under flow. Curr. Opin. Cell Biol. 14, 581–586 (2002).

    CAS  PubMed  Google Scholar 

  11. Pavalko, F. M. et al. The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via α-actinin: receptor positioning in microvilli does not require interaction with α-actinin. J. Cell Biol. 129, 1155–1164 (1995).

    CAS  PubMed  Google Scholar 

  12. Ivetic, A., Deka, J., Ridley, A. J. & Ager, A. The cytoplasmic tail of L-selectin interacts with members of the Ezrin–Radixin–Moesin (ERM) family of proteins: cell activation-dependent binding of moesin but not ezrin. J. Biol. Chem. 277, 2321–2329 (2002).

    CAS  PubMed  Google Scholar 

  13. McEver, R. P. & Cummings, R. D. Role of PSGL-1 binding to selectins in leukocyte recruitment. J. Clin. Invest. 100, 97–103 (1997).

    Google Scholar 

  14. Urzainqui, A. et al. ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity 17, 401–412 (2002).

    CAS  PubMed  Google Scholar 

  15. Barreiro, O. et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial structure for adherent leukocytes. J. Cell Biol. 157, 1233–1245 (2002). This paper describes the active role of endothelial cells during leukocyte firm adhesion, building an adhesion-receptor-based, actin-dependent docking structure to promote transmigration.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brakebusch, C. & Fässler, R. The integrin-actin connection, an eternal love affair. EMBO J. 22, 2324–2333 (2003). An updated review of integrin connections to the cytoskeleton; it provides a road map for such interactions.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lub, M., van Kooyk, Y., van Vliet, S. J. & Figdor, C. G. Dual role of the actin cytoskeleton in regulating cell adhesion mediated by the integrin lymphocyte function associated antigen-1. Mol. Biol. Cell 8, 341–351 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stewart, M. P., McDowall, A. & Hogg, N. LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J. Cell Biol. 140, 699–707 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Luscinskas, F. W., Ma, S., Nusrat, A., Parkos, C. A. & Shaw, S. K. Leukocyte transendothelial migration: a junctional affair. Semin. Immunol. 14, 105–113 (2002).

    CAS  PubMed  Google Scholar 

  20. Moazzam, F., DeLano, F. A., Zweifach, B. W. & Schmid-Schonbein, G. W. The leukocyte response to shear stress. Proc. Natl Acad. Sci. USA 94, 5338–5343 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nature Immunol. 2, 515–522 (2001). This paper shows that shear stress is required for leukocyte transmigration, as well as immobilized chemokines, but not chemokine gradients, which questions in vitro models studying transmigration.

    CAS  Google Scholar 

  22. Tzima, E. et al. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 21, 6791–6800 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A. & Collard, J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009–1022 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kunkel, E. J. & Butcher, E. C. Chemokines and the tissue-specific migration of lymphocytes. Immunity 16, 1–4 (2002).

    CAS  PubMed  Google Scholar 

  25. Horuk, R. Chemokine receptors. Cytokine Growth Factor Rev. 12, 313–335 (2001).

    CAS  PubMed  Google Scholar 

  26. Hur, E. M. & Kim, K. T. G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell. Signal. 14, 397–405 (2002).

    CAS  PubMed  Google Scholar 

  27. Matsumura, F., Ono, S., Yamakita, Y., Totsukawa, G. & Yamashiro, S. Specific localization of serine 19 phosphorylated myosin II during cell locomotion and mitosis of cultured cells. J. Cell Biol. 140, 119–129 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rey, M. et al. Association of the motor protein nonmuscle myosin heavy chain-IIA with the C terminus of the chemokine receptor CXCR4 in T lymphocytes. J. Immunol. 169, 5410–5414 (2002).

    CAS  PubMed  Google Scholar 

  29. Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154, 147–160 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Servant, G., Weiner, O. D., Neptune, E. R., Sedat, J. W. & Bourne, H. R. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol. Biol. Cell 10, 1163–1178 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nieto, M. et al. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J. Exp. Med. 186, 153–158 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Buul, J. D. et al. Leukocyte-endothelium interaction promotes SDF-1-dependent polarization of CXCR4. J. Biol. Chem. 278, 30302–30310 (2003).

    CAS  PubMed  Google Scholar 

  34. Haddad, E. et al. The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. Blood 97, 33–38 (2001).

    CAS  PubMed  Google Scholar 

  35. Vicente-Manzanares, M. et al. A role for the Rho-p160 Rho coiled-coil kinase axis in the chemokine stromal cell-derived factor-1α-induced lymphocyte actomyosin and microtubular organization and chemotaxis. J. Immunol. 168, 400–410 (2002).

    CAS  PubMed  Google Scholar 

  36. Vicente-Manzanares, M. et al. Involvement of phosphatidylinositol 3-kinase in stromal-cell derived factor-1α-induced lymphocyte polarization and chemotaxis. J. Immunol. 163, 4001–4012 (1999).

    CAS  PubMed  Google Scholar 

  37. Allen, W. E., Zicha, D., Ridley, A. J. & Jones, G. E. A role for Cdc42 in macrophage chemotaxis. J. Cell Biol. 141, 1147–1157 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hannigan, M. et al. Neutrophils lacking phosphoinositide 3-kinase γ show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc. Natl Acad. Sci. USA 99, 3603–3608 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Volkov, Y., Long, A., McGrath, S., Eidhin, D. N. & Kelleher, D. Crucial importance of PKC-β(I) in LFA-1-mediated locomotion of activated T cells. Nature Immunol. 2, 508–514 (2001).

    CAS  Google Scholar 

  40. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nature Immunol. 4, 741–748 (2003).

    CAS  Google Scholar 

  41. Sánchez-Madrid, F. & del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    PubMed  PubMed Central  Google Scholar 

  42. del Pozo, M. A. et al. ICAMs redistributed by chemokines to cellular uropods as a mechanism for recruitment of T lymphocytes. J. Cell Biol. 137, 493–508 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Montoya, M. C. et al. Role of ICAM-3 in the initial interaction of T lymphocytes and APCs. Nature Immunol. 3, 159–168 (2002).

    CAS  Google Scholar 

  44. Serrador, J. M. et al. A novel serine-rich motif in the intercellular adhesion molecule 3 is critical for its ezrin/radixin/moesin-directed subcellular targeting. J. Biol. Chem. 277, 10400–10409 (2002).

    CAS  PubMed  Google Scholar 

  45. Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Matsui, T., Yonemura, S., Tsukita, S. & Tsukita, S. Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol-4-phosphate 5-kinase and not ROCK kinases. Curr. Biol. 9, 1259–1262 (1999).

    CAS  PubMed  Google Scholar 

  47. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998). The first report on supramolecular cluster formation at the interface between a T cell and an antigen-presenting cell (APC).

    CAS  PubMed  Google Scholar 

  48. Dustin, M. L. et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94, 667–677 (1998).

    CAS  PubMed  Google Scholar 

  49. Sampath, R., Gallagher, P. J. & Pavalko, F. M. Cytoskeletal interactions with the leukocyte integrin β2 cytoplasmic tail. Activation-dependent regulation of associations with talin and α-actinin. J. Biol. Chem. 273, 33588–33594 (1998).

    CAS  PubMed  Google Scholar 

  50. Allenspach, E. J. et al. ERM-Dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15, 739–750 (2001).

    CAS  PubMed  Google Scholar 

  51. Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15, 715–728 (2001).

    CAS  PubMed  Google Scholar 

  52. Delon, J., Kaibuchi, K. & Germain, R. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 15, 691–701 (2001).

    CAS  PubMed  Google Scholar 

  53. Itoh, K. et al. Negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp–EBP50–ERM assembly. J. Immunol. 168, 541–544 (2002).

    CAS  PubMed  Google Scholar 

  54. Gil, D., Schamel, W. W., Montoya, M. C., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    CAS  PubMed  Google Scholar 

  55. Ardouin, L. et al. Vav1 transduces TCR signals required for LFA-1 function and cell polarization at the immunological synapse. Eur. J. Immunol. 33, 790–797 (2003).

    CAS  PubMed  Google Scholar 

  56. Krause, M. et al. Fyn binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/Vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J. Cell Biol. 149, 181–194 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Badour, K. et al. The Wiskott-Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity 18, 141–154 (2003). This reference highlights the role of Wiskott-Aldrich syndrome protein (WASP)-related proteins and actin polymerization in the establishment of the immunological synapse.

    CAS  PubMed  Google Scholar 

  58. Stowers, L., Yelon, D., Berg, L. J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase Cdc42. Proc. Natl Acad. Sci. USA 92, 5027–5031 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuhn, J. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16, 111–121 (2002). Translocation of the microtubule-organizing centre (MTOC) to the contact area during the formation of the immunological synapse does not depend on microtubule shortening. Instead, it slides towards the interface and bounces from side to side to extend the secretory machinery.

    CAS  PubMed  Google Scholar 

  60. Lowin-Kropf, B., Shapiro, V. S. & Weiss, A. Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J. Cell Biol. 140, 861–871 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Xie, Z., Sanada, K., Samuels, B. A., Shih, H. & Tsai, L. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement and neuronal migration. Cell 114, 469–482 (2003).

    CAS  PubMed  Google Scholar 

  62. Ren, Y., Li, R., Zheng, Y. & Busch, H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J. Biol. Chem. 273, 34954–34960 (1998).

    CAS  PubMed  Google Scholar 

  63. Glaven, J. A., Whitehead, I., Bagrodia, S., Kay, R. & Cerione, R. A. The Dbl-related protein, Lfc, localizes to microtubules and mediates activstion of Rac signalling pathways in cells. J. Biol. Chem. 274, 2279–2285 (1999).

    CAS  PubMed  Google Scholar 

  64. van Horck, F. P., Ahmadian, M. R., Haeusler, L. C., Moolenar, W. H. & Kranenburg, O. Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. J. Biol. Chem. 276, 4948–4956 (2001).

    CAS  PubMed  Google Scholar 

  65. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001). This paper shows the formation of the immunological synapse between cytotoxic T lymphocytes (CTLs) and their target cells and shows that CTLs acquire membrane components from the target cell through immunological-synapse bridges.

    CAS  PubMed  Google Scholar 

  66. Vyas, Y. M. et al. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J. Immunol. 167, 4358–4367 (2001).

    CAS  PubMed  Google Scholar 

  67. Peters, P. J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med. 173, 1099–1109 (1991).

    CAS  PubMed  Google Scholar 

  68. Clark, R. & Griffiths, G. M. Lytic granules, secretory lysosomes and disease. Curr. Opin. Immunol. 15, 516–521 (2003).

    CAS  PubMed  Google Scholar 

  69. Clark, R. H. et al. Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nature Immunol. 4, 1111–1120 (2003).

    CAS  Google Scholar 

  70. Nagakawa, T. et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569–581 (2000).

    Google Scholar 

  71. Haddad, E. K., Wu, X. & Hammer, J. I. Henkart, P. A. Defective granule exocytosis in Rab27a-deficient lymphocyte from Ashen mice. J. Cell Biol. 152, 835–842 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Stinchcombe, J. C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol. 152, 825–834 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fitzer-Attas, C. J. et al. Fcγ receptor-mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr and Lyn. J. Exp. Med. 191, 669–682 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Crowley, M. T. et al. A critical role for Syk in signal transduction and phagocytosis mediated by Fcγ receptors on macrophages. J. Exp. Med. 186, 1027–1039 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Castellano, F. et al. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Curr. Biol. 9, 351–360 (1999).

    CAS  PubMed  Google Scholar 

  76. Lorenzi, R., Brickell, P. M., Katz, D. R., Kinnon, C. & Thrasher, A. J. Wiskott-Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood 95, 2943–2946 (2000).

    CAS  PubMed  Google Scholar 

  77. Swanson, J. A. et al. A contractile activity that closes phagosomes in macrophages. J. Cell Sci. 112, 307–316 (1999).

    CAS  PubMed  Google Scholar 

  78. Tuxworth, R. I. et al. A role for myosin VII in dynamic cell adhesion. Curr. Biol. 11, 318–329 (2001).

    CAS  PubMed  Google Scholar 

  79. Olazabal, I. M. et al. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr. Biol. 12, 1413–1418 (2002).

    CAS  PubMed  Google Scholar 

  80. Platt, N., da Silva, R. P. & Gordon, S. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol. 8, 365–372 (1998).

    CAS  PubMed  Google Scholar 

  81. Reddien, P. W. & Horvitz, H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol. 2, 131–136 (2000). The elucidation of an important phagocytic pathway in Caenorhabditis elegans for the clearance of apoptotic bodies.

    CAS  PubMed  Google Scholar 

  82. Leverrier, Y. & Ridley, A. J. Requirement for Rho GTPases and PI 3-kinases during apoptotic cell phagocytosis by macrophages. Curr. Biol. 11, 195–199 (2001).

    CAS  PubMed  Google Scholar 

  83. Albert, M. L., Kim, J. I. & Birge, R. B. αvβ5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nature Cell Biol. 2, 899–905 (2000). This paper shows an important role for a phagocytic pathway in the clearance of apoptotic bodies in mammalian cells.

    CAS  PubMed  Google Scholar 

  84. Zhou, Z., Hartwieg, E. & Horvitz, H. R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43–56 (2001).

    CAS  PubMed  Google Scholar 

  85. Liu, Q. A. & Hengartner, M. O. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells. Cell 93, 961–972 (1998).

    CAS  PubMed  Google Scholar 

  86. Weber, M. L. & Krammer, P. H. Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin. Immunol. 15, 145–157 (2003).

    Google Scholar 

  87. Parlato, S. et al. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J. 19, 5123–5134 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Moreno de Alborán, I., Robles, M. S., Bras, A., Baena, E. & Martinez, A. C. Cell death during lymphocyte development and activation. Semin. Immunol. 15, 125–133 (2003).

    Google Scholar 

  89. Cunningham, C. C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325–327 (1992).

    CAS  PubMed  Google Scholar 

  90. Clayton, L. K. et al. T cell receptor ligation by peptide/MHC induces activation of a caspase in immature thymocytes: the molecular basis of negative selection. EMBO J. 16, 2282–2293 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Coleman, M. L. et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nature Cell Biol. 3, 339–345 (2001). References 91 and 92 provide evidence that caspase-dependent cleavage of a RhoA effector regulates blebbing through the dysregulation of cortical tension.

    CAS  PubMed  Google Scholar 

  92. Sebbagh, M. et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nature Cell Biol. 3, 346–352 (2001).

    CAS  PubMed  Google Scholar 

  93. Coleman, M. L. & Olson, M. F. Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ. 9, 493–504 (2002).

    CAS  PubMed  Google Scholar 

  94. Mashima, T. et al. Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene 14, 1007–1012 (1997).

    CAS  PubMed  Google Scholar 

  95. Tu, S. & Cerione, R. A. Cdc42 is a substrate for caspases and influences fas-induced apoptosis. J. Biol. Chem. 276, 19656–19663 (2001).

    CAS  PubMed  Google Scholar 

  96. Dong, L. Q. et al. Phosphorylation of protein kinase N by phosphoinositide-dependent protein kinase-1 mediates insulin signals to the actin cytoskeleton. Proc. Natl Acad. Sci. USA 97, 5089–5094 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. vanLeeuwen, F., vanDelft, S., Kain, H., vanDerKammen, R. & Collard, J. Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nature Cell Biol. 1, 242–248 (1999).

    CAS  Google Scholar 

  98. Rudel, T. & Bokoch, G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571–1574 (1997).

    CAS  PubMed  Google Scholar 

  99. Gruenheid, S. & Finlay, B. B. Microbial pathogenesis and cytoskeletal function. Nature 422, 775–781 (2003).

    CAS  PubMed  Google Scholar 

  100. Terebiznik, M. R. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biol. 4, 766–773 (2002).

    CAS  PubMed  Google Scholar 

  101. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. Salmonella typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998). A protein product of a bacterial gene activates RAC and CDC42, promoting actin polymerization.

    CAS  PubMed  Google Scholar 

  102. Fu, Y. & Galan, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    CAS  PubMed  Google Scholar 

  103. Hayward, R. D. & Koronakis, V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18, 4926–4934 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhou, D., Mooseker, M. & Galan, J. E. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283, 2092–2095 (1999).

    CAS  PubMed  Google Scholar 

  105. Meresse, S. et al. Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cell. Microbiol. 3, 567–577 (2001).

    CAS  PubMed  Google Scholar 

  106. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998). The protein ActA from Listeria monocytogenes recruits cellular machinery and directly induces actin polymerization, constituting the basis of actin-dependent, intracellular bacteria-independent movement.

    CAS  PubMed  Google Scholar 

  107. de Chastellier, C. & Berche, P. Fate of Listeria monocytogenes in murine macrophages: evidence for simultaneous killing and survival of intracellular bacteria. Infect Immun. 62, 543–553 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. McDonald, D. et al. Recruitment of HIV and its receptors to dendritic cell–T cell junctions. Science 300, 1295–1297 (2003).

    CAS  PubMed  Google Scholar 

  109. Igakura, T. et al. Spread of HTLV-1 between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713–1716 (2003). The first evidence on the role of the cytoskeleton on cell–cell spreading of viral particles.

    CAS  PubMed  Google Scholar 

  110. Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995).

    CAS  PubMed  Google Scholar 

  111. Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

    CAS  PubMed  Google Scholar 

  112. Moss, B. & Ward, B. M. High-speed mass transit for poxviruses on microtubules. Nature Cell Biol. 3, 245–246 (2001).

    Google Scholar 

  113. McDonald, D. et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159, 441–452 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    CAS  PubMed  Google Scholar 

  115. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott-Aldrich syndrome protein WASP regulate the actin cytoskeleton through Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    CAS  PubMed  Google Scholar 

  116. Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932–6941 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Weaver, A. M., Young, M. E., Lee, W. -L. & Cooper, J. A. Integration of signals to the Arp2/3 complex. Curr. Opin. Cell Biol. 15, 23–30 (2003).

    CAS  PubMed  Google Scholar 

  118. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409–421 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, F. & Higgs, H. N. The mouse formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol. 13, 1335–1340 (2003).

    CAS  PubMed  Google Scholar 

  121. Vicente-Manzanares, M. et al. The RhoA effector mDia is induced during T cell activation and regulates actin polymerization and cell migration in T lymphocytes. J. Immunol. 171, 1023–1034 (2003).

    CAS  PubMed  Google Scholar 

  122. Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

    CAS  PubMed  Google Scholar 

  123. Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. N. Activation of LIM kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol. 1, 253–259 (1999).

    CAS  PubMed  Google Scholar 

  124. Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805–809 (1998).

    CAS  PubMed  Google Scholar 

  125. Sanders, L. C., Matsumura, F., Bokoch, G. M. & deLanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083–2085 (1999).

    CAS  PubMed  Google Scholar 

  126. Kawano, Y. et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol. 147, 1023–1038 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).

    CAS  PubMed  Google Scholar 

  128. Thrasher, A. J. WASp in immune-system organization and function. Nature Rev. Immunol. 2, 635–646 (2002).

    CAS  Google Scholar 

  129. Anton, I. et al. WIP deficiency reveals a differential role for WIP and the actin cytoskeleton in T and B cell activation. Immunity 16, 193–204 (2002).

    CAS  PubMed  Google Scholar 

  130. Gomez, M., Kioussis, D. & Cantrell, D. A. The GTPase Rac-1 controls cell fate in the thymus by diverting thymocytes from positive to negative selection. Immunity 15, 703–713 (2001).

    CAS  PubMed  Google Scholar 

  131. Roberts, A. W. et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10, 183–196 (1999).

    CAS  PubMed  Google Scholar 

  132. Yu, H., Leitenberg, D., Li, B. & Flavell, R. A. Deficiency of small GTPase Rac2 affects T cell activation. J. Exp. Med. 194, 915–926 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Henning, S. W., Galandrini, R., Hall, A. & Cantrell, D. A. The GTPase Rho has a critical regulatory role in thymus development. EMBO J. 16, 2397–2407 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to many colleagues whose important contributions have not been quoted due to space constraints, and thank R. Horwitz, X. Bustelo, B. Alarcón, A. G. Arroyo, R. Gónzalez-Amaro, J. L. Rodr'guez-Fernández, M. Gómez, M. Yáñez-Mó and M. Rey for critical reading of the manuscript, as well as members of the F. S. -M. laboratory for helpful discussions. This work has been supported by grants from the Ministerio de Ciencia y Tecnolog'a, Ayuda a la Investigación Básica Juan March 2002 and FIS CO3/01-Red Cardiovascular.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Sánchez-Madrid.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

beige

CAS

CD43

CD44

CD95

CD95L

CDC42

CHS1

DOCK180

EBP50

FAK

FOS

ICAM1

ILK

LFA1

NCK

PAK

PKC-β

PKN

PSGL1

RAB27

RAP1

VCAM1

VLA4

WASP

WIP

ZAP70

Glossary

CAPPING PROTEINS

Capping proteins bind to the growing (plus) end of microfilaments, blocking actin polymerization.

NUCLEATOR PROTEINS

Nucleator proteins bind to the plus or minus end of microfilaments and promote actin polymerization, binding to G-actin carriers and/or inducing conformational changes in microfilaments that promote its growth (nucleation).

ADAPTOR PROTEINS

Molecules that lack any known intrinsic enzymatic, DNA binding or receptor functions, but mediate protein–protein or lipid–protein interactions. Most function as flexible molecular scaffolds by regulating the spatio-temporal dynamics of specific effector molecules.

SELECTINS

Glycoproteins expressed by circulating blood cells or activated endothelial cells that support tethering and rolling through oligosaccharide-dependent interactions.

EZRIN–RADIXIN–MOESIN

(ERM). Adaptor proteins that connect plasma-membrane molecules to the actin cytoskeleton through the release of a head-to-tail autoinhibitory interaction, targeting proteins to specific regions of the plasma membrane such as microvilli and filopodia.

MICROVILLI

An actin-based protrusive structure that is mainly found in epithelial cells; it is also present in other cell types such as leukocytes, where they have a role in tethering and rolling.

IMMUNORECEPTOR TYROSINE-BASED ACTIVATION MOTIF

(ITAM). A structural motif containing tyrosine residues, found in the cytoplasmic tails of several signalling molecules. The tyrosine in the motif (Tyr-Xaa-Xaa-Leu/Ile) is a target for phosphorylation by SRC tyrosine kinases and subsequent binding of proteins that contain SH2 domains.

GTP EXCHANGE FACTOR

(GEF). These proteins catalyse the incorporation of GTP into the catalytic site of small GTPases, thereby acting as their activators.

AVIDITY

Avidity is the modulation of the ability of integrins to bind to their ligands, based not on the intrinsic affinity of each individual integrin molecule for its ligand, but by integrin clustering on the plasma membrane (increased number of integrin molecules per unit of membrane area), which results in increased binding capability.

AFFINITY

Integrin affinity is defined as the individual binding capability of integrins to their ligand(s), which is modulated by external factors that directly regulate integrin conformation, not their ability to cluster and therefore modulate their density on the plasma membrane.

G-PROTEIN-COUPLED RECEPTOR (GPCR) FAMILY

The largest family of membrane receptors, they bind small molecules (including chemoattractants), have seven transmembrane domains and signal through heterotrimeric G-proteins, resulting in cell activation.

LAMELLIPODIUM

Flat, fan-shaped, actin-rich structures involved in protrusion. They are usually generated in response to extracellular signals and direct cell-body migration.

UROPOD

A slender appendage formed at the trailing, rear edge of fast-migrating cells, such as amoeba, neutrophils or lymphocytes.

IMMUNOLOGICAL SYNAPSE

A structure that is formed at the cell–cell interface between a T cell and an antigen-presenting cell; also known as the supramolecular activation cluster (SMAC). Important molecules involved in T-cell activation — including the T-cell receptor, numerous signal transduction molecules and molecular adaptors — accumulate at this site. Mobilization of the actin cytoskeleton of the cell is required for formation of the immunological synapse.

PHAGOSOME

An actin-based structure that engulfs a phagocytosed particle induced by the activation of Fc receptors, which cluster many signal transduction molecules that are involved in actin polymerization and regulation.

TYPE III SECRETION SYSTEM

A set of secreted proteins that induce membrane and cytoskeleton changes used by bacteria to force their entry into cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicente-Manzanares, M., Sánchez-Madrid, F. Role of the cytoskeleton during leukocyte responses. Nat Rev Immunol 4, 110–122 (2004). https://doi.org/10.1038/nri1268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing